
B
iased software tools that use artificial intelligence (AI) and machine 
learning (ML) algorithms to aid in decisionmaking (“decision aids”) 
can exacerbate societal inequities when used in some domains, such as 
health care (Obermeyer et al., 2019) and criminal justice (Angwin et al., 

2016). During a time of civil unrest, it is crucial to ensure that such decision 
aids—in particular, those used by law enforcement (LE) agencies—produce 
equitable outcomes. For example, the U.S. Department of Homeland Security 
(DHS) already fields such decision aids (e.g., facial recognition for airport 
screening [Oliver, 2019]) and is considering others (DHS, 2018). These current 
and planned software implementations should be examined for potential bias.

Existing efforts to address AI bias typically focus on how ML models are 
developed and trained. But bias also can creep in at other steps in software 
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implementations, beginning with acquisition and 
continuing to deployment. This Perspective describes 
an initial effort to examine other potential entry points 
for bias in ML decision-support tools and to identify 
opportunity areas to improve the use of ML tools in LE 
applications.

Algorithmic decision aids (i.e., tools that rely on AI 
and ML models) are increasingly a part of LE operations. 
These technologies have the potential to be deployed 
widely, such as in biometric systems (e.g., facial recog-
nition) or for predictive policing (e.g., mapping crime 
hot spots, predicting risk of a person becoming involved 
in a violent or serious crime). As a result, it is import-
ant to understand any challenges that exist in equity, 
efficiency, and effectiveness of these individual systems. 
Furthermore, the manner in which these systems are 
integrated into decisions can systematically amplify 
adverse impacts of any of these challenges. For example, 
algorithmic outcomes that are uncritically accepted as 
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impartial could lend unjustified authority to inequitable 
decisions.

Biased use of AI and ML applications could under-
mine what previous RAND Corporation work has 
described as legitimacy policing (Hollywood et al., 2018). 
The issue of legitimacy in LE is particularly important 
given the renewed focus on racial injustice in the wake 
of protests after George Floyd was killed during an 
arrest in May 2020. Although many police officers work 
extremely hard to maintain people’s safety, public trust 
in police has fallen to record low levels (Brenan, 2020), 
while racial disparities in LE (e.g., arrests, use of force) 
persist (Williams, 2016). A key tenet of legitimacy polic-
ing is that procedural justice is crucial to the legitimacy 
of LE. Procedural justice seeks to ensure that civilians 
perceive that their interactions with police are fair 
and that their voices are heard, regardless of outcome. 
Another major part of legitimacy policing is dialogue 
with the community. Citizen participation could be a 
critical way to address bias in AI and ML, which, in 
applications used by LE, could undermine “core ingredi-
ents of procedural justice” (Mazerolle et al., 2013), such 
as perceptions of neutrality, the treatment of people with 
dignity and respect, and the trustworthiness of LE’s 
motives. Policing experts view good community rela-
tions not only as a way to improve legitimacy but also as 
a core objective of policing itself. This is because people 
are more likely to follow the law and cooperate with the 
police when they perceive the law and LE as having legit-
imate authority (see Hollywood et al., 2018, for details).
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outcomes directly affect humans. Bias is a particularly 
important flaw in decisionmaking processes based on 
statistical ML models.

What Is Bias?

Given the increasing awareness of bias in many facets 
of society, the question of what constitutes bias might 
seem self-evident. Yet a serious look at this question 
reveals that defining bias is a fraught endeavor (Osoba, 
Boudreaux, Saunders, et al., 2019). There is no single 
definition of either bias or equity. This is important 
because equity attempts to account for systemic or con-
textual factors, such as bias. Three problems arise with 
any attempt to conceptualize equity. First, equity is not 
a singular concept. Different equity norms often apply 
in different situations. Second, seemingly reasonable 
concepts of equity can be contested or even incompati-
ble with each other. Third, prescriptive and theoretical 

Once trained, a model is 
theoretically guaranteed 
to perform well during 
deployment if it is 
both contextually and 
statistically regular.

How Machine Learning Supports 

Decisionmaking

ML models are statistical models that can be deployed 
for various decisionmaking contexts, such as in DHS 
operations, to provide consistency and scalability. Most 
such models fall into one of three broad categories: 
supervised, unsupervised, and reinforcement learning 
models. Of these, supervised ML models are the most 
directly applicable to operational decisionmaking con-
texts, such as facial recognition or biometrics. In deploy-
ment, these ML models might be best conceptualized as 
question-answering artifacts. Training for these models 
consists of learning consistent and accurate behavior 
by examining past data or past examples of ques-
tion-and-answer pairs. Once trained, a model should 
perform well during deployment if both of the following 
conditions hold:

• It has contextual regularity: The decisionmak-
ing context or environment remains identical 
between training and deployment; (i.e., “don’t 
use a model built for one decision for a separate 
decision, however related”).

• It has statistical regularity: The population 
samples on which decisions are to be made are 
statistically identical during both the training and 
deployment phases (i.e., “don’t use a model built 
for one population on a different population”).

Accurate and consistent ML models help to improve 
or streamline mission-critical operations. But all deci-
sionmaking processes, whether made by humans or by 
ML models, contain some inherent flaws, which might 
be most salient and keenly felt when decisionmaking 



4

concepts of equity sometimes differ from common 
practical concepts.

The debate around the Correctional Offender 
Management Profiling for Alternative Sanctions 
(COMPAS) criminal risk assessment tool offers a com-
pelling illustration of this problem.1 COMPAS uses a 
large set of factors to assess the risk that a person will 
commit another crime following release from custody. 
In 2016, ProPublica published an analysis that indicated 
that COMPAS was twice as likely to mischaracter-
ize black people as high risk than it was white people 
(Angwin et al., 2016). This highly unequal error rate 
and its corresponding effect on black people grounded 
a compelling argument that the system was racially 
biased. The makers of COMPAS argued, however, that 
it was not racially biased (Dieterich, Mendoza, and 
Brennan, 2016). Alexandra Chouldechova mathemat-
ically proved that an accurate classification algorithm 
will produce error rates based on the makeup of the data 
being classified (e.g., if two populations are unequally 
represented in a data set, the algorithm will produce 
unequal error rates) (Chouldechova, 2017). Thus, the 
makers argued that COMPAS was not biased and that 

Governments may be held 
to fairness standards that 
differ from those applied 
to the private sector.

the unequal error rates were a natural consequence of 
a world in which black people are disproportionately 
incarcerated. Does the fact that COMPAS was twice as 
likely to mischaracterize black people than white peo-
ple as high risk mean that the model is biased? Or are 
the data that feed the model—coming from parts of the 
underlying criminal justice system—biased? And will 
the use of COMPAS reduce or entrench those biases? Is 
bias of greater concern for punitive uses of algorithms? 
These questions demonstrate how differently people can 
view the presence of bias within a single algorithm and 
its differential impact.

Further, the characteristics by which we identify the 
groups for disparate-impact analyses are typically sub-
jective choices based on social choices, legislative pro-
cesses, or even historical accident. For instance, Title VII 
of the Civil Rights Act of 1964 (Pub. L. 88-352) protects 
employees from discrimination based on specified char-
acteristics: race, color, national origin, sex, and religion. 
This legislative mandate justifies disparate-impact anal-
yses on the basis of these demographic characteristics. 
Yet even this legislative mandate was not immutable—a 
recent landmark decision from the U.S. Supreme Court 
interpreted “sex” to include gender identity and sexual 
orientation, a broadening of the earlier interpretation of 
this statute (Liptak, 2020).

Governments may also be held to fairness standards 
that differ from those applied to the private sector, 
reflecting the concern that bias causes disproportionate 
harm to vulnerable people. For instance, it is routine for 
a private company to make products affordable to only 
the wealthiest individuals, while governments might 
need to build products (e.g., infrastructure) that are 
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accessible to all. Although the government might face 
challenges in having to build accessible products, vul-
nerable groups are likely to benefit in the long run from 
having their needs broadly considered.

For this exploratory work, we settled on a simple, 
nonexhaustive definition of bias. We deem an automated 
decisionmaking system to be biased if (1) it consistently 
produces disproportional outcomes for different groups 
of people and (2) the disparate impacts are not com-
mensurate with what might be expected for people in 
the affected groups given their relative proportion of the 
population.

Why Is Bias in Machine Learning 

Important?

The goal of this effort is to help DHS understand why 
careful consideration of bias in operational ML is 
important and how to frame its thinking as it tries to 
deploy more ML-based decision products in various 
missions and operations. Our aim is not to define what 
bias in operational ML means, given the broad variety in 
the operations of DHS and its components.

Given the normative complexity of trying to under-
stand bias in decisionmaking, why should DHS (or any 
other mission-driven government agency) care about 
the question of ML-based bias in its operational deci-
sionmaking contexts? There are three compelling and 
interconnected reasons to take bias analyses seriously:

• a legislative mandate: Some operations, missions, 
and institutions are legally mandated to achieve 
specific forms of equity. This is the simplest and 

clearest motivation for examining bias in ML 
applications. In the best case, there is a clear 
statement of what equity means in that context, 
how to measure it, and mechanisms for maintain-
ing accountability for those equity constraints. 
Examples of such legislative mandates include 
the due process and equal protection clauses of 
the U.S. Constitution, which apply to U.S.-based 

An automated 
decisionmaking system is 
biased if (1) it consistently 
produces disparate or 
disproportional outcomes 
for different groups 
of people and (2) the 
disparate impacts are 
not commensurate with 
what might be expected 
for people in the affected 
groups.
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criminal justice institutions, and Equal 
Employment Opportunity Commission– and 
Title VII–style mandates that apply to U.S.-based 
employment institutions. The computer matching 
provisions of the U.S. Privacy Act offer an exam-
ple of legislation that could apply to ML technolo-
gies, such as biometrics, while predictive policing 
technologies may require additional legislation 
(Ferguson, 2017).

• an ethical mandate: Operational decisions can 
be judged by widely shared equity norms based 
in ethics. This influence is a form of social or 
cultural coercion and might seem like a compar-
atively weak mandate, but it is an important and 
relevant form of coercion for government insti-
tutions in free civil societies because democratic 
institutions are, by definition, intended to be 
expressions of popular will. Government institu-
tions that consistently violate ethical mandates in 
a free society might receive extensive pushback 
from the populace.

• an operational mandate: Efficient, equitable 
decisionmaking wastes less of the scarce resources 
of time, attention, and materiel that would be 
spent in mitigating or reversing biased decision 
processes with poor results. In a surveillance 
operation, for example, a biased decision process 
might contribute to spending more time than 
necessary on bad leads, thereby having fewer 
resources to spend on leads that actually pose 
legitimate security threats. Further, it can run the 
risk of sowing mistrust in the unfairly targeted 
subpopulation in the long term.

Although addressing bias in individual ML models 
is important, focusing on the flaws of individual models 
is insufficient to guarantee that operational outcomes 
are free from bias. Recent work (e.g., Osoba, Boudreaux, 
and Yeung, 2020; Raji et al., 2020) highlights the need for 
a more system-level perspective to address the pres-
ence of bias in overall decisionmaking missions and 
institutions.

Evaluating ML models on the basis of bias or equity 
represents a dimension of assessment that can diverge 
from the goal of making models as accurate as possible 
overall. Training models to be both accurate overall (for 
an entire population) and equitable (similarly accurate 
for relevant subgroups) may require constrained opti-
mizations where those objectives partially conflict with 
one another (Donini et al., 2018). This potential diver-
gence between equity and overall accuracy suggests that 
ML model development practices should be updated to 
explicitly quantify trade-offs where they occur. Aiming 
to optimize the separate objectives of equity and overall 
accuracy can lead to tension, depending on the decision-
making context. One difficult scenario occurs when 
the decision outcome in question is strongly correlated 
with identifiers of statutorily protected categories (U.S. 
National Archives and Records Administration, 2016).

What We Did

We designed our method to represent the initial step in 
a process to help LE agencies identify up-front potential 
for bias and disparate outcomes before beginning the 
software acquisition process. Thus, we sought to identify 
key points in the LE software acquisition life cycle at 
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which bias might occur and to develop ways to evaluate 
which actions could help mitigate the impact of that 
potential bias. Drawing on RAND research and discus-
sions with RAND experts, we first developed a notional 
acquisition framework. This framework consists of steps 
that are intended to collectively represent the overall life 
cycle of a software acquisition process.

Using this acquisition framework and drawing on 
previous RAND work on algorithmic audits, we exam-
ined each acquisition step for different types of bias and 
considered the set of possible actions to detect and mit-
igate them. We reviewed options for addressing AI and 
ML bias in LE systems and spoke with DHS subject-mat-
ter experts to assess how such a framework could be 
most useful.

Using the synthesized results, we identified oppor-
tunity areas ripe for further study and developed 
approaches that DHS could consider using to help 
identify how to safeguard against bias in automated 
decisions or mitigate the adverse systemic impacts of 
algorithmic decision aids. This Perspective describes 
these approaches, along with the acquisition framework, 
with supporting text that illustrates key points that DHS 
should audit for bias in software deployment. Finally, we 
discuss opportunity areas for future actions or research 
that DHS could undertake.

Identifying Sources of Bias in the 

Acquisition of Machine Learning 

Tools

To begin thinking about how bias could affect DHS’s 
acquisition of ML tools, we lay out a notional acquisi-
tion framework consisting of five steps, as shown in the 
figure:

1. acquisition planning
2. solicitation and selection
3. development
4. delivery
5. deployment, maintenance, and sustainment.

This list of steps does not depict the full scope of DHS 
acquisitions but illustrates the main steps in the process 
at which ML bias concerns might emerge. This frame-
work was created after reviewing existing DHS and U.S. 
Department of Defense documentation and regula-
tions on acquisitions, including the Federal Acquisition 

A difficult scenario 
occurs when the decision 
outcome in question is 
strongly correlated with 
identifiers of statutorily 
protected categories.
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Regulation. Future work will need to develop a more 
detailed and more accurate version of this framework.

In this Perspective, we argue that, of the five steps in 
the acquisition process, the steps in which the acquired 
system is created (development) and used (deployment, 
maintenance, and sustainment) are the principal ones 
in which bias is introduced. However, the other three 
steps—acquisition planning, solicitation and selection, 
and delivery—can influence whether and the extent to 
which development and deployment, maintenance, and 
sustainment are biased. Therefore, addressing bias needs 
to be a life-cycle concern that is baked into the acquisi-
tion process from the very beginning and not something 
that can be addressed effectively as an afterthought.

In this section, we describe each step of our notional 
acquisition framework, and we suggest several pathways 
that could result in bias in a final deployed AI or ML 
product. This description is not meant to be conclusive 
or exhaustive but to serve as a starting point for further 
understanding of processes by which bias can be intro-
duced into a system and how bias can be identified and 
mitigated. (See the appendix for additional examples of 
types of bias that can arise in each stage.)

Acquisition Planning

As defined in the Federal Acquisition Regulation,

Acquisition planning means the process by which the 
efforts of all personnel responsible for an acquisition 
are coordinated and integrated through a compre-
hensive plan for fulfilling the agency need in a timely 
manner and at a reasonable cost. It includes develop-
ing the overall strategy for managing the acquisition. 
(48 C.F.R. § 2.101)

The first stage in the acquisition process is identify-
ing a need for a product or service. From here, a plan is 
developed to detail the item’s proposed use and require-
ments. Details of the plan include explaining the prob-
lem, identifying how the proposed product or service 
provides a solution, laying out the high-level design and 
functionality of the proposed product, and defining spe-
cific requirements and caveats for the proposed product 
or service. Because the acquisition planning process 
frames the rest of the acquisition life cycle, we hypothe-
size that the doors to bias can be opened at this stage in 
several ways and that, therefore, bias mitigation efforts 
must begin here.

First, we suggest that it is important for the acqui-
sition team to fully understand the social context in 
which the acquired technology will be used and ways 

A Notional Acquisition Framework
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in which that social context might itself be biased. This 
context can lead to bias in the system’s use, even in the 
absence of bias in the ML model itself. For example, con-
sider COMPAS. Studies show that incarceration rates, 
for a variety of reasons, are disproportionate by race 
(National Research Council, 2014). For example, more 
black people are incarcerated relative to how many black 
people are in the population. When these data are fed 
into the COMPAS tool, the COMPAS algorithm makes 
disproportionate recidivism predictions by race. That is, 
when the underlying rates of incarceration for black and 
white people are disproportionate to their demographic 
distributions, the risk tool makes disproportionate risk 
classification error rates by race, even if the tool might 
not itself have made disproportionate errors.

Second, the use case for which the technology is 
intended and its user interface might be mischaracter-
ized in terms of whom they will affect and how they 
might differently affect people with different character-
istics. A mischaracterization can lead to violations of 
contextual regularity, yielding a technology that is not 
developed for the circumstances in which it is actually 
used, with a potential for biased results in the actual 
target population.

Third, concerns about bias are at least partly moti-
vated by the fact that judgments from an ML system may 
often be used to assign punitive consequences, for which 
errors can cause great harm, such as through misiden-
tification. Concerns about bias are motivated in part by 
a recognition that such harm ought not be dispropor-
tionately borne by certain groups of people, particularly 
those who have historically experienced discrimination 
or who are already vulnerable.

The harm from errors should be deliberately iden-
tified in specific ML applications. Imagine that an LE 
agency uses a facial recognition system in an attempt to 
identify and apprehend a suspected domestic terrorist, 
a situation that could involve deadly force. An error in 
the facial recognition system can lead to the ultimate 
cost: unjust loss of life. There might be more consensus 
around and more urgency in fighting bias in such a 
system.

However, in other cases, there might be less 
consensus about what constitutes harm. In an 
immigration-overstay risk tool, for example, a determi-
nation that someone is high risk can result in that person 
being monitored to ensure that they do not overstay 

Errors in an ML system 
can cause great harm, 
and such harm ought 
not be disproportionately 
borne by groups of people 
who have historically 
experienced discrimination 
or who are already 
vulnerable.
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their visa. To some, such monitoring could seem like a 
small consequence, not meaningfully different from not 
being monitored. Under such a view, the need to address 
bias might be less urgent because the harm from an 
incorrect determination about a person’s risk might be 
perceived as insignificant. In other words, the cost of the 
tool being wrong might seem small. But ongoing mon-
itoring of entire populations deemed to be high risk for 
overstays could be seen as unacceptable to those popu-
lations and to civil rights and civil liberties groups. This 
implicit value judgment could result in less vigilance and 
more bias than if monitoring were seen as invasive and 
in violation of an individual’s rights (i.e., under a view in 
which errors are very costly). The acquisition planning 
process should include deliberation over the human 
impact of different outcomes, make explicit all subjec-
tive judgments about those differences, and embrace a 
multiplicity of values and opinions. The results of these 
deliberations should inform requirements and provisions 
on mitigating bias in capability needs, concepts of oper-
ations, requirements, and design documents, such as in 
the Joint Requirements Integration and Management 
System process.

Finally, research has shown that bias may be reduced 
when the team making the decisions is representative 
of the affected populations, in that the team members 
would presumably have a better understanding of those 
populations because of the characteristics team members 
share with them (Todd et al., 2011). Conversely, a team 
whose members share few characteristics or lack famil-
iarity with those who will be affected—particularly those 
who might be negatively affected—might not recognize 
bias or its harms. The composition and characteristics 

of members of the acquisition planning team could 
shape what biases can get introduced or mitigated. For 
example, diverse work teams, particularly those with 
“culturally competent” leaders, more effectively share 
and analyze organizational information (Groves and 
Feyerherm, 2011), which could aid in recognizing bias. 
Thus, having an acquisition team that is representative 
of the population targets for whom the technology is 
intended should lead to better outcomes.

Solicitation and Selection

A key follow-on step is to solicit proposals for develop-
ment of the technology from vendors and to select one 
or more of those vendors as providers. Proposals can 
be acquired by issuing requests to vendors, by receiving 
bids from them, or both. After comparing the bids that 
have been received, the component can then award a 
contract based on a variety of criteria, including respon-
siveness, capability, cost, and timeliness.

The solicitation and selection of vendors to deliver 
an AI or ML application can also open the door to bias. 
First, the language in the solicitation, or the criteria by 
which vendors are selected, could be biased or favor 
certain respondents over others, even potentially dis-
couraging some vendors from applying and resulting in 
a less-diverse vendor pool that might not prioritize or 
recognize bias concerns. For example, research shows 
that, in hiring, the gender-specific wording in a job 
description can reinforce gender inequalities (Gaucher, 
Friesen, and Kay, 2011). Similar phenomena could occur 
when selecting vendors. The assessment criteria should 
be validated for equity across the range of all potential 
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respondents and solutions that could be delivered, 
according to the acquisition process’s goals. Government 
requests for proposals could include specific antibias 
requirements, such as performance and testing require-
ments in verifying and validating any algorithms.

Second, as in the acquisition planning process, the 
solicitation language can mischaracterize the use case, 
causing vendors to develop an application that is not 
well suited to the purpose for which the product would 
ultimately be deployed.

Third, solicitations can overlook the issue of bias or 
not require each proposal to include a bias assessment, 
monitoring, or mitigation plan. Thus, a vendor could 
unintentionally develop and deliver a product that is 
biased simply because it is not directed to manage bias. 
This may be affected by the extent to which the vendor’s 
workforce is more or less representative of or familiar 
with the target user population, and this could be a con-
sideration in selection. In addition, a solicitation could 
be explicit about the importance of monitoring for bias 
but precede a selection process (which can be driven by 
cost and schedule over other factors) that does not factor 
in a vendor’s plans to test for and mitigate bias.

Development

Perhaps the most crucial stage in acquisition of an ML 
tool is the actual development of the tool, in that this 
stage is the one at which algorithmic bias can occur. 
Generally, the model development process includes 
designing, building, training, and testing the model in 
a simulated environment. The vendor can iterate these 
steps until the tool reaches the performance needed 

for deployment in a realistic environment. This step is 
usually the focus of attention in the current literature on 
bias in ML.

Supervised ML models—models that produce 
prediction results by learning from an existing data 
set with results—are the most likely to be deployed in 
DHS applications because, among ML model types, 
they are easiest to develop, most readable, and easiest to 
deploy.2 Supervised ML models learn by maximizing or 
improving an accuracy metric (e.g., maximizing the true 

The language of the 
solicitation and criteria 
for selection must be 
unbiased. The language 
needs to accurately 
characterize the use 
case, and solicitations 
must require each 
proposal to include a bias 
assessment, monitoring, 
or mitigation plan.
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positive and true negative rates of a facial recognition 
model). However, a myopic focus on a goal of accuracy 
can lead to models that exhibit unwanted behavioral side 
effects (Soares and Fallenstein, 2015), such as bias. Such 
biases are most likely to present as lower model accuracy 
rates (i.e., higher error rates) on specific subsets of the 
population.

There are different mechanisms by which an ML 
training process can produce a biased system. These 
mechanisms implicate violations largely of the statistical 
regularity assumption underpinning ML models. (Recall 
from the introduction that the valid use of ML models 
for decisionmaking requires statistical regularity in both 
training and deployment. Statistical regularity refers to 
the condition in which the populations subject to ML 
decisions are statistically identical during both the train-
ing and deployment phases—that is, “don’t use a model 
built for one population on a different population.”) A 

few ways in which the assumption can be broken down 
include the following:

• sample-size and base rate differences: ML 
models are statistical models. They are therefore 
subject to statistical laws. Basic statistical laws 
guiding the efficacy of such models provide that, 
in general, the accuracy (and hence error rates 
or confidence levels) of an ML model is propor-
tional to the training sample size. As a result, 
the model’s outputs for samples from minority 
subpopulations will have lower accuracy than for 
samples from large or majority subpopulations. 
When the training sets are large enough, such 
differences might fade. But, in many cases, these 
differences are meaningful. A related point made 
in recent theorems is that, when outcome base 
rates differ across demographics, it is impossible 
to simultaneously satisfy certain fairness metrics 
(Berk et al., 2018).3

• unrepresentative training data and distribution 
shift: A model trained on one statistical popu-
lation will perform differently if deployed on a 
different population. Such shifts in the population 
statistics between training and deployment can 
occur for a variety of reasons:

 – systemic changes in how or where the ML 
model is deployed

 – training on old or historical data whose collec-
tion may have been poisoned by systemic biases

 – training on old data that no longer reflect cur-
rent realities.

The overall effect of the shift is a proxy pop-
ulation mismatch. The ML model performance 

During development, a 
model must be trained on 
data that are appropriately 
representative of the 
populations for whom it 
will be deployed.
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will be uncalibrated or misaligned for the new 
decision population and hence exhibit unequal 
decisionmaking accuracy or error rates among 
different groups. During development, the ML 
training process should be monitored to ensure 
that models are trained on the appropriate 
populations.

Delivery

In a subsequent step, DHS receives the developed system 
and may also integrate it into its own infrastructure. 
This step can involve verification and validation, includ-
ing testing the product for performance. At this step, if 
DHS does not include testing for bias in its verification 
and validation process, it might fail to identify a bias 
that, when the system is deployed, causes harm. Testing 
during delivery should therefore include verification and 
validation to ensure that the product does not contain 
bias both before and after integration and that processes 
are in place to detect bias during postintegration use.

Consider, for example, the two applications 
described under the “Acquisition Planning” section 
earlier: facial recognition to identify domestic terror-
ists and a visa-overstay risk tool. A red-teaming of the 
former might involve testing with a large and diverse test 
data set of images of people with different demographic 
characteristics and even different lighting and environ-
mental conditions. A related effort on a risk tool might 
take historical immigration data reaching several years 
back to test how the system performs along key demo-
graphic and other characteristics. Evidence of bias could 

be taken back to the vendor and improvements made 
under the original vendor contract.

Deployment, Maintenance, and 
Sustainment

Last, the product is deployed for operation, and the cli-
ent component takes over maintenance and sustainment 
of the system. Despite the system being deployed, it is 
far from being finished. Instead, the system is (or should 
be) monitored to identify and address errors, improve 
performance, and, as appropriate, build in new features. 
Because fielding and deployment of a system are often 
the threshold for measuring success of an acquisition 
process, significant effort and costs go into maintaining 
and sustaining it (Gupta, 1983).

There are several mechanisms by which a system’s 
deployment, maintenance, and sustainment can be 

Testing during delivery 
should include verification 
and validation to ensure 
that the product does 
not contain bias—and 
that it will not do so after 
integration.
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biased. These mechanisms implicate violations largely of 
the contextual regularity assumption underpinning ML 
models. (Recall that contextual regularity refers to the 
condition in which the decisionmaking context remains 
identical between training and deployment—that is, 
“don’t use a model built for one decision for a separate 
decision, however related.”) Examples of these mecha-
nisms include the following:

• decision model misuse: A model trained for a 
specific decision can be uncalibrated for other 
decisions. This decision context creep occurs 
occasionally (e.g., the reported use of a recidivism 

risk estimation tool for informing decisions of 
sentence length). There is the further question of 
what decisions it may or may not be prudent to 
automate with ML models. Various factors enter 
into this decision: Is the goal merely decision effi-
ciency? Do stakeholders need decision explana-
tions? Are the ML models trusted in that domain? 
Is the decision high stakes? Is there meaningful 
human oversight in case of mistakes? Are there 
relevant, unbiased, historical data with which to 
train the model?

• automation bias: A key value of ML decision 
aids is their ability to off-load expensive cogni-
tive processing for decisionmaking. Over time, 
that off-loading leads to patterns of decision-
making that increasingly and uncritically rely 
on such aids. Unfortunately, without careful 
design, deployed ML models can “fail silently” 
(i.e., they give no indications of when their out-
puts should not be trusted, unlike, for example, 
failures in physical systems, such as deteriorating 
infrastructure).

• unequal application of discretion: Another 
source of bias in this step is the unequal appli-
cation of discretion. Artificial decision aids are 
often deployed with direct human oversight. This 
makes for more robustness in decisionmaking 
in that the human can step in to adjudicate or 
correct edge cases on which the model might fail. 
Such human oversight involves an amount of dis-
cretion that can be subject to implicit or explicit 
biases. These can lead to decisionmaking having 

Decisions for which a 
model is trained must be 
consistent with those it 
will actually make once 
deployed. The model 
must also be monitored 
to ensure equitability in 
application and modified 
as needed throughout its 
lifetime.
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disparate impact on protected and vulnerable 
groups.

• model modifications: After a model is deployed, 
it can be modified through software updates or 
patches. Following any such updates, an ML deci-
sion aid must be reevaluated to identify potential 
bias. But the time between software upgrades can 
vary greatly, and conducting postupdate evalu-
ations can involve significant costs and effort. 
Continual monitoring for bias could provide early 
insight into potential issues that can be addressed 
early on. Including ongoing auditing procedures 
in deployment documents could help ensure that 
DHS programs actually mitigate the misuses and 
biases described.

In sum, bias can be influenced and introduced in 
several places in an acquisition process, and understand-
ing and mitigating bias requires attention throughout 
that life cycle.

Opportunity Areas to Address Bias 

in Machine Learning Software 

Acquisition

In this exploratory work, we sought to help frame DHS’s 
thinking about the nature of bias in the operational use 
of ML in LE decisionmaking. The preceding sections 
introduced a notional ML product acquisition frame-
work to help identify points at which eventual imple-
mentations of algorithms can become biased across the 
course of a typical acquisition process. We identified 

several points in the acquisition process at which such 
biases can develop.

The framework needs further tailoring to the oper-
ational need and nuances of the various DHS agencies 
and stakeholders. Stakeholders interested in using algo-
rithmic decision aids should seek to further identify and 
understand the specific ways in which bias can occur 
and what domain-specific actions would help mitigate 
them. For example, when acquiring decision aids for LE 
purposes, DHS might want to ensure that algorithms 
treat subgroups in the deployment population in an 
unbiased fashion. Special care would be needed to neu-
tralize any bias introduced by historical LE practices and 
to avoid unfairly targeting specific groups (Philimon, 
2020). This factor might be important to consider across 
DHS components.

As various components of DHS acquire technologies 
with ML capabilities, some considerations will apply 
broadly, while others will be more specific to one com-
ponent or another. Mitigation considerations for specific 
DHS components include the following (some of which 
they may already be doing):

• the Transportation Security Administration 
(TSA): When acquiring facial recognition or 
body scanners for LE and surveillance, TSA could 
adopt various ways to rigorously test such sys-
tems to prevent unexpected biases in deployment. 
Although TSA might not be able to collect demo-
graphic data on those going through airports, 
it might be able to conduct testing that could 
account for preexisting differences in the com-
position of populations going through the vari-
ous airports in the country, which likely vary by 
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region. Different airports might require different 
ways to prevent bias.

• U.S. Customs and Border Protection (CBP): 
When acquiring algorithmic decision aids for 
surveillance, CBP could account for the differ-
ences in the composition of populations at the 
borders and those within the United States. That 
factor could affect current and future surveillance 
methods and the introduction of bias into any 
system.

• the Federal Emergency Management Agency 
(FEMA): When acquiring algorithmic deci-
sion aids for disaster response and relief, FEMA 
should explicitly include selection criteria for 
equity in the acquisition process (if it does not do 
so already). For example, FEMA might want to 
determine whether certain types of disasters or 
regions tend to receive shorter response times or 
more aid. In some cases, such disparity might be 
necessary because of the level of destruction, but, 
in other cases, it could signal a bias in prioritiza-
tion of disaster management and reduction.

Opportunity Areas Specific to the 
Department of Homeland Security

Several DHS-specific crosscutting standards or concerns 
may warrant attention as DHS increasingly fields opera-
tional ML decision aids. We discuss some of them in this 
section.

Establish Standards and Baselines to Measure 

Bias in Machine Learning Used by Law 

Enforcement Agencies

As LE adopts more types of algorithmic decision aids for 
its uses, a key factor to keep in mind is the standards and 
baselines used to measure bias. For example, there are 
differences between models that make decisions about 
people and those that make decisions about objects. 
Both types of models will be vulnerable to containing 
bias. Models that identify objects, such as those that 
detect suspicious objects in suitcases at airport secu-
rity, could have a bias to label toothbrushes as knives. 
Because most people carry toothbrushes, such a bias 
would affect travelers regardless of any distinguishing 
characteristics. This bias would thus incur mainly an 
economic cost in time spent on unnecessary searches. In 
contrast, a model biased against a certain type of person 
can adversely affect people and potentially even their 
communities. For instance, a model containing a bias 
that flags residents of certain ZIP Codes as suspicious or 
high risk would end up targeting specific subsets of the 
population. This could lead to legal concerns and could 
reinforce stereotypes against this population group. As 
a result, the costs of biased decisions on people often go 
beyond economic into social and psychological costs.

DHS components that, like TSA, use multiple types 
of models could establish baselines for bias in software. 
This includes thinking carefully about what dimensions 
of bias are relevant and how to monitor for bias in their 
models on those dimensions.4 One could determine how 
they currently acquire algorithmic decision aids and 
how to improve on current standards (or develop new 
ones) for detecting and mitigating bias. Identification of 
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when to trigger checks for bias would also be important; 
the most crucial would likely be comparing models that 
distinguish among objects and those that distinguish 
among people.

Identify How to Account for and Weigh All Costs of 

Biased Outcomes

There are two main kinds of errors for classification ML 
models: false positives and false negatives. False posi-
tives are data points that have incorrectly been labeled 
positive (e.g., a model detecting for blue cats incorrectly 
labels a blue dog as a blue cat). False negatives are data 
points that have incorrectly been labeled negative.

Although the ideal is to reduce both types of error, 
after a certain point, that is impossible. Often, attempt-
ing to lower the false-positive rate ends up increasing 
the false-negative rate and vice versa. In such cases, it is 
important to understand what both types of error mean 
for the model at hand and for the people or objects under 
scrutiny. Normally, one type of error is more hazard-
ous in a particular context than the other. As such, it is 
important to be explicit in weighing the costs of both 
types of error and account for such disproportionate 
outcomes.

In the example of facial recognition in LE, this 
balance between false negatives and false positives is 
crucial given that all errors could result in harm. At 
first glance, a false negative in this case could be seen as 
having a higher cost than a false positive: A false positive 
could lead, for instance, to an unnecessary strip search, 
whereas a false negative (e.g., failure to detect a weapon) 
could lead to a more catastrophic result. A false posi-
tive might seem to have a lower cost than the result of 

a false negative labeling. On the other hand, a high rate 
of false positives, leading to a high number of unfruit-
ful searches, could erode public trust. It is up to LE and 
other government agencies, which are already working 
hard to protect the public, to find this balance as they 
incorporate ML models into their operations.

Provide Workforce Development for Artificial 

Intelligence Capabilities

As AI systems are increasingly integrated into LE 
functions, agencies should consider how to train and 
shape the workforce that will acquire and work with 
the software, such as reviewing its results. This could 
include training acquisition personnel who write and 
evaluate solicitations, or who work with vendors, pro-
viding them with ways to avoid introducing bias. Users 
of ML-based decision aids in the DHS components will 
also need training on taking into account common 
limitations of algorithmic decisionmaking, such as 
considering the impact of implicit value judgments in 
algorithmic outcomes, understanding how and why ML 
models can fail, and maintaining backup processes for 
double-checking possibly incorrect automated decisions. 
Further, there are no easy fixes for workforce training: 
Agencies will need to reckon with evidence of mixed 
effectiveness of workplace diversity (e.g., implicit bias) 
training (Bezrukova et al., 2016; Kalinoski et al., 2013; 
Dobbin and Kalev, 2016). In other words, training 
should be much more targeted than on simply compli-
ance or inclusivity.
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Opportunity Areas Not Specific to the 
Department of Homeland Security

Several courses of action can apply more broadly than 
any DHS effort to deploy ML-based decision aids.5 These 
courses of action reflect generally effective ML deploy-
ment practices:

• certification labels on ML resources: ML models 
should have certification labels with information 
on ML model characteristics (e.g., model purpose 
and limitation, accuracy and error rates, disag-
gregated evaluation statistics).6 Data sets used for 
training models also need to be clearly charac-
terized for distribution statistics and limitations. 

Label requirements should be standardized across 
DHS components. Every ML model deployed 
by a DHS component should also have a routine 
scheduled recertification process. The standards 
for such certification should be guided by neutral 
or independent parties.

• performance tracking and disaggregated eval-
uation: Clear, consistent processes are required 
to continuously measure the performance of 
deployed ML decision aids. This includes evalu-
ating and tracking the accuracy of the ML model 
(e.g., false positives and false negatives). The 
process also includes repeated audits for bias. 
Bias audits include disaggregated evaluation of 
ML models (e.g., measure model performance on 
different, relevant subdemographics; see Mitchell 
et al., 2019). The need for tracking can place 
specific demands on operations. For example, one 
might need to implement experimental design 
setups to try to estimate traditionally unobserved 
signals (e.g., false negatives, sensitive attributes of 
individuals).

• impact assessments and continuous 
red-teaming: ML models should undergo exten-
sive checks at each step to ensure quality con-
trol. This could be in the form of red-teaming or 
security tests. Where feasible, the use of model 
implementations can also enable more-robust 
external verification. The continuous applica-
tion of red-teaming enables ongoing estimation 
of operational robustness to new ML security 
threats. DHS should also require an algorithmic 
impact assessment (Reisman et al., 2018) when 

DHS can avoid harmful 
bias in its machine 
learning systems by 
establishing standards for 
measuring bias, weighing 
costs of biased outcomes, 
and providing workforce 
development for the 
emerging technologies.
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planning to apply ML-based decision aids. This 
would include clear articulation of the decision 
to be automated, minimal performance speci-
fications, and audit methodology. Algorithmic 
impact assessments should also be produced for 
any third-party models before integration or 
deployment.

Ways Forward

Significant further work remains to flesh out the frame-
work presented in this Perspective and to highlight bias 
entry points in a more DHS-specific context to make the 
framework more productive for DHS acquisition plan-
ning. There are also unanswered research questions that 
could help DHS leaders think productively about the 
question of bias in operational ML tools. Each of these 
could form the basis of further research. These questions 
include the following:

• a DHS-specific examination of bias in decision-
making: Our general definition of bias did not 
account for legal and other obligations, such as 
antidiscrimination. What would be a practical 
definition of ML equity or bias for DHS? How 
would that definition vary across the different 
kinds of DHS services and operations? What 
measure and audit procedures would address 
these bias definitions?

• developing best practices on ML decision auto-
mation and bias audits: What kinds of opera-
tions within the components are most likely to 
benefit from automation with ML tools? What 
kind of automation would be relevant (e.g., fully 

automated, human-in-the-loop)? And which of 
these automatable operations are especially sus-
ceptible to bias concerns? What are specific bias 
mitigation strategies? Alternatively, what kinds of 
decisions and operations should not be automated? 
And for what reasons?

• developing best practices on reducing bias in 
ML tool acquisitions: What are effective ways to 
specify contracts for third-party ML tool devel-
opment to reduce bias? What antibias standards 
should DHS adopt for verifying, validating, and 
integrating ML acquisitions? What is the life-cycle 
management framework for these tools? What 
should the relevant model recertification pro-
cesses look like?

Appendix. Bias Concerns in the 

Notional Acquisition Framework

The table describes examples of potential ways in which 
bias can be introduced at various points in the software 
acquisition life cycle. For each stage (e.g., acquisition 
planning), we indicate several examples of different 
types of bias (e.g., bias in underlying social context that 
is underappreciated) that could arise , and suggested 
mitigation steps, within that stage.
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Examples of Bias and Mitigation Steps at Various Points in the Acquisition Process

DeliveryDevelopmentAcquisition planning
Deployment, maintenance,

and sustainment
Solicitation and 

selection

• Bias in the underlying social 

context could be under-

appreciated.

• The use case could be 

mischaracterized or under-

characterized.

• Value judgments about different 

outcomes from an AI or ML 

system could remain implicit.

• Acquisition teams might not 

share or understand the 

characteristics of the people the 

AI or ML system would affect.

• The use case could be 

mischaracterized or 

undercharacterized.

• Solicitations could 

overlook bias.

• Vendors’ plans for 

avoiding bias might not 

be factored into the 

selection process.

• Assumptions behind the 

model could be biased.

• Training or test data set 

samples could be 

unbalanced.

• The costs of different 

kinds of errors could be 

incorrectly estimated.

• The training data could 

be unrepresentative of 

the affected population 

or contain historical bias.

• Verification and validation 

might not include testing 

for bias.

• Models might not be 

labeled with specific 

use-case or decision 

purpose and training 

data statistics.

• The product could lack 

any or adequate 

explanation of contexts 

under which the model 

can go wrong.

• There could be bias in where 

the system is deployed.

• There could be a distribution 

shift in the real-world or 

deployed population sample.

• There might be no monitoring 

of performance or shifts in 

deployed accuracy.

• (Acquisition team) Understand 

the social context in which the 

technology will be used.

• Deliberate and identify the 

human impact of biased 

outcomes, and make explicit 

any subjective judgments of 

outcomes.

• Ensure that the acquisition 

team is representative of the 

populations for whom the 

technology is intended.

• Include bias-mitigation 

requirements and provisions in 

capability needs, concepts of 

operations, requirements, and 

design documents, such as in 

the Joint Requirements 

Integration and Management 

System process.

• In requests for proposals 

include specific antibias 

requirements, such as 

performance and testing 

requirements in verifying 

and validating any 

algorithms.

• Monitor the ML training 

to ensure that models are 

trained on the appropriate 

populations.

• Conduct red-teaming, 

such as testing with a 

large and diverse test 

data or historical data.

• Collect evidence of bias 

so that the vendor can 

make improvements 

under the original vendor 

contract.

• Continually monitor for bias 

to provide early insight into 

potential issues that can be 

addressed early on. 

• Include ongoing auditing 

procedures in deployment 

documents to help ensure 

that DHS programs actually 

mitigate the misuses and 

biases described.
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Notes
1 COMPAS was developed by a company called Northpointe, which 
later became Equivant.
2  The same general points hold for unsupervised and reinforcement 
learning models (the other main types of ML models). But there will 
be special nuances for each of these other types.
3  This can happen when there is a correlation between group 
membership and the outcome or target of prediction. For example, 
if people from a given population group are more likely to have a 
certain outcome, a good ML model would need to discriminate on 
the basis of that demographic attribute. That would fail to maintain 
some equity metrics, such as demographic parity.
4  Such dimensions might be, for instance, those derived from ethi-
cal or legal mandates for equity.
5  These assume an operating model in which DHS and its compo-
nents use ML models developed by third parties subject to con-
tracted terms, as opposed to one in which ML models are internally 
developed.
6  Disaggregated evaluation refers to the practice of evaluating the 
performance of a decisionmaking model using samples from disag-
gregated subpopulations. This helps users measure or observe any 
variation in performance that is correlated to demographic or other 
sensitive attributes, such as whether the model is less accurate for 
black women than for the background population.
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