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Foreword 

The OECD’s Committee for Scientific and Technological Policy (CSTP) brings together representatives from 

OECD countries, and a number of partner economies, to examine major aspects of public policy relevant 

to science, technology and innovation (STI). By guiding the OECD’s empirical research and data gathering, 

and promoting peer-based learning, the Committee works to improve understanding of these policies and, 

ultimately, to advance policymaking itself.  

The digital revolution and its implications have been central to the OECD’s, and CSTP’s, work for many years. 

Recently – during 2017 and 2018 – the OECD’s Going Digital project comprehensively examined digital 

technology’s economic and social impacts. The resulting report, Going Digital: Shaping Policies, Improving 

Lives, provides a roadmap for policy making in the digital age.  

In 2015, in their joint declaration, ministers from OECD countries and partner economies, at the OECD 

Ministerial Meeting in Daejeon (Korea), recognised that digital technologies are revolutionising STI. Ministers 

highlighted that the rapid development of digital technologies is changing the way scientists work, collaborate 

and publish; increasing the importance of access to scientific data and publications; opening new ways for 

the public to engage and participate in science and innovation; facilitating research co-operation between 

businesses and the public sector; contributing to the transformation of how innovation occurs; and, driving 

the next production revolution. The ministers asked the OECD to monitor this ongoing transformation.  

This publication examines digitalisation’s effects on STI and the associated consequences for policy. It draws 

mainly on work performed under the aegis of CSTP during 2017 and 2018. Some of the topics addressed are 

longstanding themes in CSTP’s work – from access to publicly funded research data, to the measurement 

of digital science and innovation. Other topics are newer and emerging, from the role of artificial intelligence in 

production, to how digital technology could help utilise the collective intelligence of the scientific community, 

to recent advances in the digitalisation of biotechnology.  

Certain aspects of the digital revolution are still relatively new, even if their effects are already profound. It 

is evident that, owing to the general-purpose character of digital technology, its future development will 

also have far-reaching consequences. As digital technology and its many ramifications evolve, CSTP will 

continue to serve as a unique international and inter-governmental focal point for policy analysis and 

guidance in the field of STI. 

This book was declassified by CSTP on 12 August 2019 by written procedure and prepared for publication 

by the OECD Secretariat.
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Executive Summary 

This report examines digitalisation’s effects on science, technology and innovation and the associated 

consequences for policy. Digitalisation today is the most significant vector of innovation in firms, science 

and governments. If properly harnessed, digital technologies could advance science, raise living standards, 

help protect the natural environment and improve policymaking itself.   

Digitalisation and science 

Digitalisation is bringing change to all parts of science, from agenda setting, to experimentation, knowledge 

sharing and public engagement. To achieve the promise of open science research budgets need to account 

for the increasing costs of managing data. Greater policy coherence and trust between research data 

communities are needed to increase sharing of public research data across borders. Co-operation is required 

to build and provide access to cyber-infrastructure internationally. And open access (OA) publication requires 

incentives for OA that match mandates coming from research funders. 

Governments should also support platform technologies for science, such as distributed research and 

development networks, and storage for digital/genetic data. Room exists to better exploit advanced digital 

technologies in science. Artificial intelligence (AI) can increase productivity in science, at a time when research 

productivity may be falling. But policies are needed on high-performance computing, skills, and access to data 

(such as standardisation for machine readability of scientific datasets). AI in science also raises novel policy 

issues: for instance, will intellectual property systems need adjustment as invention by machines expands?  

Realising the untapped potential of digital technology in policy 

Digital technology could support policymaking for science and innovation in novel ways. Few governments 

have experimented with the opportunities available. Examples include: self-organised funding allocation; 

using collective intelligence through digitally enabled prediction markets and machine-crowd combinations; 

developing blockchain applications in science; and, using social media to help spread innovation.  

Digitalisation and innovation in firms 

As businesses innovate with data, new policy issues are likely to arise. For instance, restricting cross-border 

data flows can raise firms’ costs of doing business, especially for small and medium-sized enterprises 

(SMEs). Decisions may soon be required on as yet unanswered policy questions: for example, should data 

transmitted in value chains be protected from sale to third parties?   

AI is finding applications in most industrial activities. But firms with large volumes of data may not have the 

in-house skills to analyse it fully. Governments can work with stakeholders to develop voluntary model 

agreements and programmes for trusted data sharing. For more general AI applications, governments can also 

promote open data initiatives and data trusts and ensure that public data exist in machine-readable formats. 
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Effective sectoral support is also needed, for instance through roadmaps or sectoral plans, prepared with 

industry and social partners. Policy should also facilitate collaboration for innovation, for instance, by digitally 

enabled crowdsourcing and open challenges.  

Even in the most advanced economies, the diffusion of advanced digital technologies needs to accelerate. 

Institutions for technology diffusion – such as applied technology centres – can be effective, and should 

be empowered to take longer-term perspectives, rather than prioritising short-term revenue generation. To 

help diffuse digital technology to SMEs governments can: systematise key information for SMEs; develop 

information on the expected return on investments in new technologies, and on complementary process 

changes; provide signposts to reliable sources of SME-specific expertise, along with facilities where SMEs 

can test varieties and novel combinations of equipment. 

Developing digital skills 

Occupational titles like “industrial data scientist” and “bioinformatics scientist” are recent and reflect a pace 

of technological change that is contributing to shortages of digital skills. Entirely new fields of tuition are 

needed, such as dedicated programmes for the autonomous vehicle industry. Existing curricula may also 

need to change. Too few students learn the fundamental role of logic in AI. Many schools barely teach 

data analysis, and more multidisciplinary education is needed. 

Measures are required to address the fact that in many countries, in some subjects, such as AI, male 

students far outnumber female students. Digital technologies such as virtual reality could also facilitate 

skills development, as is happening in industry.  

Committing to public sector research 

Publically financed basic research has often been critical to advances in digital technology. A recent 

levelling off – and in certain cases decline – in government support for research in some major economies is 

a concern. The complexity of some emerging digitally based technologies exceeds the research capacities 

of even the largest individual firms. This necessitates a spectrum of public-private research partnerships. 

Interdisciplinary research is also essential. Policies on hiring, promotion and tenure, and funding systems 

that privilege traditional disciplines, may impede interdisciplinary research. Scientists working at the interface 

between disciplines need to know that opportunities for tenure are not jeopardised by doing so.  

Building expertise in government 

Without governments fully understanding technologies and sectors, opportunities to benefit from digital 

technologies might be lost. Calls to regulate AI highlight the need for expertise in government, such that any 

regulation of this fast-evolving technology does more good than harm. Technical expertise in government 

will also help to avoid unrealistic expectations about new technologies. As a wide array of critical systems 

become more complex, mediated and interlinked by code, governments also need improved understanding 

of complex systems. And as innovation agendas quickly evolve, governments also need to be flexible and 

alert to change. They must likewise ensure the availability of key infrastructures. For instance, broadband 

networks – especially fibre-optic connectivity – are essential to Industry 4.0.  

To use digital science and innovation policy (DSIP) systems to help formulate and deliver science and 

innovation policy, governments must: ensure the interoperability of the data sets involved; prevent misuses 

of DSIP systems in research assessments; and, manage the roles of non-government actors, particularly 

the private sector, in DSIP systems. 
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Alistair Nolan 

Directorate for Science, Technology and Innovation, OECD 

Chapter 1 summarises the main themes and policy lessons examined in the 

rest of the report. It provides background to the broader policy concerns 

facing OECD countries. It also introduces topics not considered elsewhere 

in the report, particularly in connection with artificial intelligence in science; 

using digital technology to deliver skills in science, technology, engineering 

and mathematics; possible targets for public research; and blockchain in 

science. The chapter also discusses potential uses of digital technology for 

policy making and implementation, mainly linked to various forms of 

collective intelligence. These essentially untapped opportunities – such as 

self-organised systems for funding allocation, and prediction markets – 

might have significant benefits for science, technology and innovation. They 

invite further study and, possibly, pilot testing.  
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and policies 
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Introduction 

In 2015, in their joint declaration (OECD, 2015), ministers from OECD countries and partner economies, at 

the OECD Ministerial Meeting in Daejeon (Korea), recognised that digital technologies are revolutionising 

science, technology and innovation (STI). The ministers asked the OECD to monitor this transformation.  

During 2017 and 2018, the OECD’s “Going Digital” project comprehensively examined digital technology’s 

economic and social impacts (OECD, 2019). The resulting report, Going Digital: Shaping Policies, Improving 

Lives, presents a strategy for policy making in the digital age. Complementing that report, this publication 

examines digitalisation’s effects on STI and the associated consequences for policy. It draws mainly on 

work performed under the aegis of the OECD’s Committee for Scientific and Technological Policy.  

Apart from this overview, the publication has six other chapters:  

Chapter 2 (“How are science, technology and innovation going digital? The statistical evidence”) presents 

recent statistical evidence of key developments in the digitalisation of STI. It also reviews current and future 

measurement priorities.  

Chapter 3 (“Digital technology, the changing practice of science and implications for policy”) focuses on 

digitalisation and open science, and the associated policy consequences.  

Chapter 4 (“Digital innovation: Cross-sectoral examples and policy implications”) explores the many ways that 

digital technology is affecting innovation in firms, and the priorities for innovation policy in the digital age.  

Chapter 5 (“Artificial intelligence, digital technology and advanced production”) discusses digital technology 

in advanced manufacturing.  

Chapter 6 (“Digitalisation in the bioeconomy: Convergence for the bio-based industries”) explains the fast-evolving 

applications of digital technology in bio-based science and industry, and the priorities for government action.  

Chapter 7 (“The digitalisation of science and innovation policy”) reviews developments in digital information 

systems that support policy for STI, what these systems could look like in future, and what policy makers 

should do to maximise their potential.  

Why does digitalisation matter? 

The importance of digitalisation in STI is hard to overstate. Today, it is usual to view the future of STI through 

the lens of digitalisation’s projected impacts. Carlos Moedas, the EU Commissioner for Research, Science and 

Innovation, recently announced that the Ninth EU Framework Programme for Research and Innovation will 

focus on digitalisation, beginning in 2021 (Zubașcu, 2017). Digitalisation also makes the present moment 

unique in the history of technology. As the technology commentator Kevin Kelly observed, “This is the first 

and only time the planet will get wired up into a global network” (Kelly, 2013). Furthermore, digitalisation’s 

impacts are just beginning. Around a century passed before the full effects of earlier technology revolutions, 

linked to steam and electricity, became clear. By those standards, the digital revolution has generations to go. 

Digitalisation is ubiquitous in STI in part because its effects are both microscopic and macroscopic. At the 

microscopic level, for example, researchers recently stored 200 megabytes (MB) of high-definition video and 

books in deoxyribonucleic acid (DNA) (see Chapter 6). At the macroscopic level, new digital technology 

means that a standard 10-pound satellite can capture better images of any point on Earth than a 900-pound 

satellite 20 years ago (Metz, 2019).  

If anything, this publication illustrates that digitalisation’s effects are deeper than most media reports reflect. 

Areas of research not traditionally associated with digitalisation, and on which advanced economies depend, 

from materials science to biology, are increasingly digital in character. At the same time, digital technology 

is changing the processes of science and enlarging its scope.  
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In STI, the pace of change brought by digitalisation is also striking. In all likelihood, no one foresaw in 2007 

that ten years later more than a million people would be working in companies labelling and annotating 

data and images for machine-learning systems (Hutson, 2007). A decade ago, few anticipated how far 

artificial intelligence (AI) would progress in generating scientific hypotheses, scanning scientific literature and 

orchestrating experiments performed by robots. Similarly, until recently, only a few devotees understood 

distributed ledger technologies (DLTs), much less the possibility of combining AI and DLTs such that each 

amplifies the other (Corea, 2017). 

Digitalisation is also facilitating convergence among technologies, a hallmark of innovation. There are 

several reasons for this convergence. Digital technologies can be combined – more easily than many other 

technologies – because of the shared numerical basis of different digital devices. Moreover, as it progresses, 

science can represent more of the natural world in the form of digital information. For example, as Chapter 5 

shows, materials science is advancing in a transformational way because of the growing ability to observe, 

represent in computer models and then simulate the properties of a material’s microstructure.  

Convergence between the digital and biological worlds also reflects the relatively new understanding that 

life itself is informational and algorithmic (Valiant, 2013). Miniaturisation, which digital technology propels, 

likewise facilitates convergence. For instance, millimetre-sized computers could become common in the 

next decade (Biles, 28 September 2018). Such devices are likely to converge with medical technologies, 

for example in monitoring disease processes from inside the body. 

Recent achievements in STI opened by digital technologies are extremely diverse, which reflects the 

technology’s general-purpose character. In 2014, for example, Japan introduced the first trillion-frame-a-

second camera, which gives scientists new ways to explore complex ultrafast phenomena. Supercomputers 

partition the globe into tens of thousands of digital units to simulate local weather, improving the accuracy 

of weather prediction. Indeed, a seven-day weather forecast in 2018 is as accurate as a two-day forecast 

50 years ago (Fischer, 2018). The firm Lex Machina blends AI and data analytics to assist patent litigation 

(Harbert, 2013). Using digital tools, and in a break from previous norms, consumers now innovate in significant 

ways in many industries. Furthermore, digitalisation is making science more collaborative and networked. 

In 2015, for instance, researchers working on the Large Hadron Collider published a paper with a record-

breaking 5 154 authors. 

The broader context in which science, technology and innovation are digitalising 

The digitalisation of STI is directly relevant to many important short- and long-term policy challenges. Over 

recent decades, for example, labour productivity growth has declined in many OECD countries. Developing 

and adopting efficiency-enhancing digital production technologies, along with organisational changes, are 

necessary to counter this decline. Rapid population ageing means that raising labour productivity is ever 

more urgent; the dependency ratio in OECD countries is set to double over the next 35 years. Digital technology 

contributes to productivity in part by making the mixing and recombining of ideas easier, which facilitates 

innovation. Some evidence even suggests that innovation increasingly occurs by combining existing ideas 

rather than by forming new ones (Youn et al., 2015).  

Demographic change is likely to exert long-term downward pressure on discretionary public spending in 

OECD countries. Relative to national incomes, this pressure could entail static or even reduced levels of 

public support for science and innovation (OECD, 2018a). A protracted period of slow growth could have 

a similar effect. Such scenarios raise the question of whether, and by how much, digital technology could 

increase the efficiency of policy.  

A related and worrying possibility is that the productivity of science might be falling. Some scholars claim 

that science is becoming less productive. They argue, variously, that the low-hanging fruits of knowledge 

have now been picked, that experiments are becoming more costly, and that science must increasingly be 

done across complex boundaries between a growing number of disciplines.  
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Scientists are also flooded with data and information. The average scientist reads about 250 papers a year, 

but more than 26 million peer-reviewed papers exist in biomedical science alone.1 In addition, the overall 

quality of scientific output may be declining. Freedman (2015) estimated that around USD 28 billion per 

year is wasted on unreproducible preclinical research in the United States alone.  

Not everyone agrees that research productivity is faltering (Worstall, 2016). However, any slowdown would 

have serious implications for growth. Increased funding would be needed to maintain discovery at previous 

levels and to seed the innovations and productivity improvements necessary to cope with demographic 

change and public spending constraints. Any boost to research productivity spurred by digital technology, 

from open science to the wider use of AI, could be of structural importance.  

If deployed effectively, digitalisation could also help accelerate science and technology’s ability to resolve 

global challenges. Environmental challenges include a warming atmosphere, loss of biodiversity, depleted 

topsoil and water scarcity. Health challenges include threats of disease – from multidrug-resistant bacteria 

to new pandemics. Demographic challenges include the consequences of ageing populations and the 

pressing need to treat neurodegenerative diseases. Breakthroughs in science and technology are necessary 

to address such challenges, and to do so cost-effectively.  

While this report describes many ways in which digitalisation can strengthen STI, it also examines policy 

challenges created by digital technology. For example, owing to digitalisation, technology choice may be 

becoming more complex, even for large firms. One eminent venture capitalist recently wrote:  

“Many of my friends at big companies tell me that ‘what is 5G ?’ floats around a lot of corporate headquarters 
almost as much as ‘what is machine learning?’” (Evans, 2019). 

Digitalisation might also widen capability gaps in science across countries, owing to the uneven distribution 

of complementary assets such as computational resources, human capital and data access. In addition, 

the complex digital systems that underpin vital infrastructures, from transport networks to financial markets, 

might become more difficult to manage safely. Issues such as how to cope with so-called “predatory” online 

science journals (see Chapter 3), and how to keep personal research data anonymous, illustrate that new 

(and useful) applications of digital technology can generate new policy concerns.  

Digitalisation also creates the need for new thinking about institutions and norms, both public and private. 

For example, in the public sector, governments in a number of countries are considering whether commissions 

for AI and robotics might be necessary. Similarly, in the private sector, as AI voice assistants become 

increasingly lifelike, firms must decide if customers should have the right to know that they are talking with 

machines (Ransbotham, 21 May 2018). The rapid pace of developments in digital technology may also 

require that regulatory processes become more anticipatory.  

Digitalisation also raises other more far-reaching challenges, which this report does not tackle. What, for 

instance, should policy makers do about corrosive social and psychological effects that stem from the 

seepage of digital technology into much of everyday life? 

Measuring the digitalisation of science and innovation 

Chapter 2 provides a statistical context for the rest of the publication. It addresses measurement challenges 

and reports statistics on some key trends in the digitalisation of science and innovation. To that end, it draws 

principally on work under the OECD’s Working Party of National Experts on Science and Technology Indicators. 

The chapter examines four broad dimensions of the digital transformation of science: i) adoption of facilitating 

digital practices and tools; ii) access to digitised scientific outputs, especially publications, data and computer 

code; iii) use and further development of advanced digital procedures to make research more data-driven; 

and iv) communication of scientists’ work and how this influences the way scientists are rewarded.  
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Overall, while digital activity in science is pervasive, there is considerable room to better exploit the potential 

of digital technology, particularly advanced tools. Findings in this chapter include the following: 

 Digital technology facilitates sharing of scientific knowledge. However, OECD analysis reveals that, 

one year later, 60% to 80% of content published in 2016 was only available to readers via 

subscription or payment of a fee.  

 Less than half of respondents in all science fields deliver data or code to a journal or publisher to 

support their publications. 

 One-third of research and development (R&D) performed and funded by companies in the United 

States is software-related. OECD research suggests that for companies using advanced digital 

technologies, the odds of reporting innovations are doubled. A positive relationship also exists 

between the development of technologies and innovation, especially product innovation. 

 From 2006 to 2016, the annual volume of AI-related publications grew by 150%, compared to 50% 

for indexed scientific publications overall. The People’s Republic of China (hereafter “China”) is 

now the largest producer of AI-related science, in terms of publications. The country is also fast 

improving the quality of its scientific output in this area. 

 Public funding of science relating to AI is growing significantly, with a spate of recent policy and 

funding announcements. However, comparisons across countries are difficult because AI does not 

fit into pre-established taxonomies of R&D funding. Indeed, available data systems are ill equipped 

to address queries about subject areas supported by publicly funded research. Addressing this 

shortcoming is an OECD priority (through the “Fundstat” pilot project). The OECD has also begun 

to map trends in research funding for AI using institutional case studies, as Chapter 2 illustrates 

with two examples from the United States. 

 At both doctorate and master’s levels, many more men than women graduate in information and 

communication technology (ICT). ICT doctorate holders are especially likely to have been born 

abroad, exposing this population to policies that change residential or nationality requirements. Holders 

of doctorates in ICT are also more mobile across jobs than their counterparts. For example, in the 

United States, 30% of ICT doctorate holders changed jobs in the last year compared to 15% on 

average across other fields. 

 Data from the OECD International Survey of Scientific Authors show that younger scientists are 

more likely to engage in all dimensions of digital behaviour. 

Digitalisation, science and science policy 

Chapter 3 shows that digitalisation is bringing change to all parts of science, from agenda setting, to 

experimentation, knowledge sharing and public engagement. Digital technology is facilitating a new paradigm 

of open science, a term referring to efforts to make scientific processes more open and inclusive. Open 

Science has three main pillars: open access (OA) to scientific publications and information; enhanced 

access to research data; and broader engagement with stakeholders. Together, the three pillars could 

increase the efficiency and effectiveness of science and speed the translation of research findings into 

innovation and socio-economic benefits. However, transitioning to open science requires the management 

of policy tensions associated with each pillar. 

In his book Imagined Worlds, the physicist Freeman Dyson observed that there have been seven concept-

driven revolutions in science during the past 500 years (Dyson, 1998). These revolutions are associated 

with the names of Copernicus, Newton, Darwin, Maxwell, Freud, Einstein and Heisenberg. During roughly 

the same period there were around 20 tool-driven revolutions, from the telescope in astronomy to X-ray 

diffraction in biology. Today, ICT is an evolving tool creating revolutionary change in science. 



24  1. AN OVERVIEW OF KEY DEVELOPMENTS AND POLICIES 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

Many of the processes and outputs of science also improve digital technology. For example, the Laser 

Interferometer Gravitational-Wave Observatory, which detected cosmic gravitational waves, yielded new 

algorithms for detecting small signals in noisy data. And physicists designing the Large Hadron Collider federated 

computing systems at hundreds of sites to analyse petabytes of data, further developing grid computing. 

Accessing scientific information 

Emerging OA publishing models and pre-print servers, mega-journals, institutional repositories and online 

information aggregators are simplifying access to scientific information. However, the new era brings 

challenges compared to traditional specialised journals that published scientific research after peer review. 

It is less clear how editorial and peer review processes will work and how the academic record will be 

maintained and updated over time. There is considerable concern about the number of “predatory” online 

journals that charge authors for publication but carry out little or no quality control. It is important to identify 

predatory journals publicly and revise any funding mandates or other incentives that inadvertently 

encourage publication in such journals. 

Digital tools can support the publication of scientific papers in several ways. Stimulated by a growing global 

scientific community, and by academic pressure to publish, the volume of scientific papers is vast and 

growing. ICT can help organise, share and analyse this growing volume of scientific information. At the 

same time, online open lab notebooks such as Jupyter provide access to primary experimental data and 

other information. Researchers are also employing AI to scrutinise suspicious scientific research and 

identify falsified data (Sankaran, 2018). Such tools depend on the broad adoption of standards and unique 

digital identifiers, which policy can facilitate. 

Many science funders mandate OA publication, but academic careers, and in some cases institutional funding, 

are largely determined by publishing in high-impact, pay-for-access journals. Incentives and changes to 

evaluation systems need to match funders’ mandates in order to transition faster to OA publication. A 

stronger focus on article-based metrics rather than journal impact factors is one way forward. New indicators 

and measures will also be required to incentivise data sharing. 

A tiered publication process might emerge to address the challenges of using digital tools. Sharing and 

commenting on scientific information could occur earlier, with only some findings eventually published in 

journals. Some fields of research are testing open post-publication peer review, whereby the wider scientific 

community can discuss a manuscript. Such a process has strengths: transparent public discussion among 

peers gives incentives for sound argumentation, for instance. But it could also have weaknesses if, for 

example, reviewers making false or erroneous comments capture the process. However, with proper 

safeguards, post-publication peer review could bolster the quality and rigour of the scientific record.   

Enhancing access to research data 

Policy responses are needed to enhance access to research data. The OECD first advocated for greater 

access to data from publicly funded research in 2006. Since then, tools to enable greater access have 

improved, and guidelines and principles have been widely adopted. Nevertheless, as the following points 

illustrate, obstacles still limit access to scientific data: 

 The costs of data management are increasing, straining research budgets. Science funders should 

treat data repositories as part of research infrastructure (which itself requires clear business models). 

 A lack of policy coherence and trust between communities hinders data sharing across 

borders. The sharing of public research data requires common legal and ethical frameworks. 

Through such fora as the Research Data Alliance, funders should co-ordinate support for data 

infrastructure. New standards and processes, such as safe havens for work on sensitive data, 

could also strengthen trust, as might new technology such as blockchain. 

https://thenextweb.com/author/vishwamsankaran/
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 Science must adapt its governance and review mechanisms to account for changing privacy 

and ethical concerns. For example, to use human subject data in research requires informed 

consent and anonymisation. However, anonymising personal data from any given source might be 

impossible if new ICTs can link it to other personal data used in research. Transparent, accountable, 

expert and suitably empowered governance mechanisms, such as institutional review boards and/or 

research ethics committees, should oversee research conducted with new forms of personal data.    

 Strategic planning and co-operation are required to build and provide access to cyber-

infrastructure internationally. Global bodies such as the aforementioned Research Data Alliance 

can help develop community standards, technical solutions and networks of experts. 

 The skills needed to gather, curate and analyse data are scarce. New career structures and 

professions – such as “data stewards” – need to be developed for data management and analysis.  

Broadening engagement with science 

Engagement with a broader spectrum of stakeholders could make scientific research more relevant. 

Digitalisation is opening science to a variety of societal actors, including patient groups, non-governmental 

organisations, industry, policy makers and others. Such opening aims to improve the quality and relevance 

of science and its translation into practice. Societal engagement can enhance the entire research process, 

from agenda setting to co-production of research and dissemination of scientific information. Perhaps the 

most critical area of enlarged engagement is in setting priorities for research. If well designed, a more 

inclusive process of agenda setting could make research more relevant and might even generate entirely 

new research questions.  

Recent years have seen the expansion of “citizen science”, whereby scientific research is conducted or 

supported through ICT-enabled open collaborative projects. ICT is helping science elicit input from the 

networked public to label, generate and classify raw data, and draw links between data sets. ICT is also 

creating opportunities for the networked public to take part in novel forms of discovery. For instance, by 

playing a video game – Eyewire – over 265 000 people have helped neuroscientists develop thousands of 

uniquely detailed neuronal maps, colour-coding over 10 million cell sections and generating data on neuron 

function (Princeton University, 2018). Whether, and how best, to expand citizen science requires answers 

to a number of questions. These include how to break complex research projects into parallel subtasks 

that do not depend on understanding the entire project. Crowdfunding of science is also emerging. It 

appears to provide opportunities for small-scale but meaningful funding for young scholars with risky 

research projects. 

Digital technology could benefit science by levering collective input in other ways. For example, recent 

research suggests that digital technology could help draw on the collective insight of the entire scientific 

community to improve allocation of public research funds (Box 1.1). 

Artificial intelligence for science 

AI might increase productivity in science at a time when – as discussed earlier – some evidence suggests 

research productivity may be falling (Bloom et al. 2017). AI is being used in all phases of the scientific 

process, from automated extraction of information in scientific literature, to experimentation (the pharmaceutical 

industry commonly uses automated high-throughput platforms for drug design), large-scale data collection, 

and optimised experimental design. AI has predicted the behaviour of chaotic systems to distant time 

horizons, tackled complex computational problems in genetics, improved the quality of astronomical imaging, 

and helped discover the rules of chemical synthesis (Musib et al., 2017). Today, AI is regularly the subject 

of papers published in the most prestigious scientific journals. 
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Recent drivers of AI in science 

AI in various forms has assisted research for some time. In the 1960s, the AI program DENDRAL helped 

identify chemical structures. In the 1970s, an AI known as Automated Mathematician helped perform 

mathematical proofs. Several key developments explain the recent rise of AI and ML. These include vast 

improvements in computer and AI software, much greater data availability and scientists’ access to open-

source AI code (King and Roberts, 2018).   

Box 1.1. Collective intelligence to help allocate science funding 

Bollen et al. (2014) and Bollen (2018) examine a new class of Self-Organized Funding Allocation 

(SOFA) systems to address issues associated with peer review. Peer review is the dominant approach 

to assessing the scientific value of proposals for research funding. However, critique of peer review is 

mounting. A major concern is the opportunity cost of scientists’ time. For example, one study in Australia 

found that 400 years of researchers’ time was spent preparing unfunded grant proposals for support from 

a single health research fund (Herbert, Barnett and Graves, 2013). Peer review has other drawbacks, 

too. The expertise in review panels is not interchangeable: many successful grant applications would 

be rejected if panel membership changed randomly (Graves, Barnett and Clarke, 2011). Some studies 

also show that peer review is less favourable to minorities, women and unconventional ideas. 

To lower administrative overheads and improve funding allocation, Bollen et al. (2014) propose a SOFA 

system that would work like this: funding agencies would give all qualified scientists an unconditional 

and equal baseline amount of money each year. Scientists would then distribute a fixed percentage of 

their funding to peers who they think would make best use of the money. Every year, all scientists would 

therefore receive a fixed grant from their funding agency and an amount passed on by peers. Scientists 

could log on to their funding agency’s website and simply select the names of scientists to whom they 

wish to donate, and indicate the amount for each. 

As funding circulates between scientists, it would come to reflect the funding preferences of the entire 

scientific community, not small review panels. Widely esteemed scientists, who also distribute a fixed 

share of the money they receive, would end up with greater influence on how funding is allocated 

overall. At the same time, because all scientists receive an unconditional yearly grant, they would have 

greater stability and autonomy for discovery. Funding levels would adjust as the collective perception 

of scientific merit and priorities evolve. Scientists would also have incentives to share research because 

if colleagues were positively impressed, more funding could follow. In addition, funding people rather 

than projects might provide scientists with more freedom to explore new research paths. 

Individual distributions would be anonymous (to avoid personal influence) and subject to conflict of 

interest restrictions. For example, scientists might be prohibited from donating to themselves, advisees, 

colleagues at their own institution, etc. By tuning distribution parameters, funding agencies and 

governments could still target research in ways that promote policy goals, such as funding under-

represented communities. Existing funding systems could also link to a SOFA to complement peer 

review and maintain societal accountability. 

Using millions of Web of Science records, simulation of a SOFA yielded a distribution of funding similar 

to that produced by grant review, but without a single proposal being prepared (Bollen et al., 2014). 

SOFAs merit further study and pilot testing. In 2018, the Dutch Parliament mandated the Netherlands 

Organisation for Scientific Research to explore a pilot study. 

http://science.sciencemag.org/content/333/6045/1015.full
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AI can also combine with robot systems to perform scientific research 

Laboratory-automation systems can exploit techniques from AI to execute cycles of scientific experimentation. 

For instance, one system uses AI to analyse molecular models with desirable properties. A robot then tests 

the predictions by physically combining chemical samples and analysing the results. These results become 

inputs to continue improving the system’s predictions (Knight, 2018). AI-enabled automation in science, 

especially in disciplines that require intensive experimentation, such as molecular biology and chemical 

engineering, has several potential benefits (King and Roberts, 2018): 

 Faster discovery. Automated systems can generate and test thousands of hypotheses in parallel. 

 Cheaper experimentation. AI systems can select more cost-effective experiments. 

 Improved knowledge/data sharing and scientific reproducibility. Robots can automatically record 

experimental procedures and results, along with the associated metadata, at no additional cost 

(recording the data, metadata and procedures adds up to 15% to the total costs of experimentation 

by humans). 

Challenges still exist in using AI and ML in science. Scientific models developed by ML are not always 

explainable. This is partly because ML poses general challenges of interpretability. It is also because laws 

that underlie an AI/ML-derived model might depend on knowledge that scientists do not yet possess. 

Furthermore, some scientific laws might be so complex that, if discovered by an AI/ML system, experts 

would still struggle to understand them (Butler et al., 2018). 

As AI plays a greater role in science, certain policies will grow in importance. These include policies that 

affect access to high-performance computing (HPC) (the computational resources essential to some 

leading-edge fields of research, including in AI, can be extremely expensive), skills (discussed later in this 

chapter), and access to data (such as standardisation for machine readability of scientific datasets). 

Policies on access to data not only matter for training AI systems, and for the scope of scientific problems on 

which AI can operate, they also matter for reproducibility. Without access to underlying data, the validity of 

conclusions arrived at by complex algorithms – some of which may already have a “black box” character – 

will be open to question. AI in science also raises new and so far unanswered questions: for instance, 

Should machines be included in academic citations? Will intellectual property (IP) systems need adjustment 

in a world in which machines can invent?  

Digitalisation and innovation in firms 

Digitalisation is also shaping innovation throughout the economy, generating new digital products and 

services and enhancing traditional ones with digital features. Chapter 4 shows that four trends characterise 

innovation in the digital age: data are a key innovation input; digital technologies enable services innovation; 

innovation cycles are speeding up; and, digital technology is making innovation more collaborative. The 

following paragraphs describe these four trends. 

Innovation processes increasingly rely on data. They use data to explore product and services development, 

and gain insight on market trends; to understand the behaviour of competitors; to optimise development, 

production and distribution processes; and to tailor products and services to specific or fluctuating demand. 

More diverse and voluminous types of data have driven the development of new business models. Such 

models include peer-to-peer accommodation (e.g. Airbnb) and on-demand mobility services (e.g. Uber). 

Other examples are platforms to search, compare and book accommodation and transportation options 

(e.g. Booking.com), digitalised invoice discounting (e.g. Due Course) and digital co-operatives (the latter 

described in Scholz and Schneider, 2019). All these new business models are enabled by the availability 

and capacity to analyse (large volumes of) real-time data. 
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Digital technologies also facilitate services innovation. Examples include new digitally enabled services, 

such as predictive maintenance services using the Internet of Things (IoT) and web-based business 

services. Manufacturers increasingly offer services enabled by digital technology to complement the goods 

they produce, and service providers increasingly invest in digital technology to improve their activities. 

Large retailers, for instance, invest intensively in the IoT to improve inventory management. 

Digital innovations such as generative design software and three-dimensional (3D) printing speed innovation 

cycles by accelerating product design, prototyping and testing. ICTs also enable the market launch of 

product beta versions that can be updated to incorporate consumer feedback. For example, GE Appliances’ 

FastWorks system involves consumers early in the development of new products such as refrigerators.  

Digital technology is also making innovation ecosystems more open and diverse. Firms increasingly 

interact with research institutions and other firms for three reasons. First, they gain access and exposure 

to complementary expertise and skills. Second, collaboration helps share the costs and risks of uncertain 

investments in digital innovation. Third, reduced costs of communication allow greater interaction, regardless 

of location. One example of a collaboration using digital technology is the SmartDeviceLink Consortium, 

an open-source platform for smartphone app development for vehicles created by Ford and Toyota.  

Does innovation policy need to be adapted for the digital age? 

Innovation increasingly involves the creation of digital products and processes. Consequently, policies for 

innovation need to align with generic features of digital technology. In this connection, Chapter 4 proposes 

overarching considerations for policy design. These considerations include access to data for innovation; 

providing suitably designed support and incentives for innovation and entrepreneurship; ensuring that 

innovation ecosystems support competition; and supporting collaboration for innovation. The following 

paragraphs further describe these considerations.  

Ensuring access to data for innovation 

To favour competition and innovation, data access policies should aim to ensure the broadest possible 

access to data and knowledge (incentivising sharing and reuse). At the same time, they must respect 

constraints regarding data privacy, ethics, intellectual property rights (IPRs), and economic costs and benefits 

(i.e. incentives to produce data). To foster data-driven innovation, some governments provide access to 

data generated by public services, such as urban transportation. Policy can also facilitate the emergence 

of markets for data.  

Restricting cross-border data flows could be harmful. Manufacturing, for instance, creates more data than 

any other sector of the economy, and cross-border data flows are set to grow faster than growth in world 

trade (Chapter 5). Research suggests that restricting such flows, or making them more expensive, for 

instance by obliging companies to process customer data locally, can raise firms’ costs and increase the 

complexity of doing business. This is especially the case for small and medium-sized enterprises (SMEs).  

As businesses innovate with data, new policy issues are likely to arise. One such issue is whether firms 

should have legal data portability rights. Companies such as Siemens and GE are vying for leadership in 

online platforms for the IoT. Such platforms will become repositories of important business data. If 

companies had portability rights for non-personal data, competition among platforms could grow, and 

switching costs for firms could fall. Another incipient policy issue concerns the treatment of non-personal 

sensor data. Individual machines can contain multiple components made by different manufacturers, each 

with sensors that capture, compute and transmit data. This raises legal issues. For example, which legal 

entities should have rights to own machine-generated data and under what conditions? Who owns rights 

to data if a business becomes insolvent? More broadly, are provisions needed to protect data transmitted 

in value chains – say, between contractors and sub-contractors – from sale to or use by third parties? 
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Providing the right support and incentives for innovation and entrepreneurship  

Government needs to be flexible and alert to change as innovation agendas quickly evolve. One approach 

to achieving policy responsiveness is the deployment and monitoring of small policy experiments, after which 

policies might be scaled up or down. In a context of rapid change, application procedures for innovation support 

instruments also need to be streamlined. For example, the Pass French Tech programme offers fast-growing 

start-ups simplified and rapid access to services (e.g. in financing, innovation and business development). 

Policies should also address services innovation. Relevant measures might include projects to develop 

entirely new services using digital technologies such as the Smart and Digital Services Initiative in Austria. 

Other potential measures include policies to help manufacturing SMEs to develop new services related to 

their products (e.g. service design vouchers for manufacturing SMEs in the Netherlands).  

Ensuring that innovation ecosystems support competition 

Markets in which digital innovation is important are subject to rapid innovation (a source of competition) 

and scale economies (a source of persistent concentration). Competition authorities and innovation policy 

makers should work together to ensure the contestability of these markets. They should also address the 

role of data as a source of market power.  

Supporting collaboration for innovation 

Digital technology permits new ways for firms and institutions to collaborate for innovation. These new 

mechanisms include crowdsourcing, open challenges and so-called living labs. The latter typically involve 

concurrent research and innovation processes within a public-private-people partnership. New research and 

innovation centres, often public-private partnerships, help multidisciplinary teams of public researchers and 

businesses work together to address technology challenges. Such centres often have innovative organisational 

structures. Examples include Data61 in Australia and Smart Industry Fieldlabs in the Netherlands.  

Digitalisation and the next production revolution 

Digital technologies are at the heart of advanced production (Chapter 5). The widely used term “Industry 

4.0” refers to a new paradigm in which all stages of manufacturing are controlled and/or connected by 

digital technology. These stages range from product design, fabrication and assembly to process control, 

supply-chain integration, industrial research and product use. Industry 4.0 technologies can raise productivity 

in many ways, from reducing machine downtime when intelligent systems predict maintenance needs, to 

performing work faster, more precisely and consistently with increasingly autonomous, interactive and 

inexpensive robots. The digital production technologies in question are evolving rapidly. For instance, 

recent innovations permit 3D printing with novel materials such as glass, printing strands of DNA, and 

even, most recently, printing on gels using light (OECD, 2017; Castelvecchi, 2019). 

AI in production 

With the advent of deep learning using artificial neural networks – the main source of recent progress in AI – 

AI is finding applications in most industrial activities. Such uses range from optimising multi-machine 

systems to enhancing industrial research. Beyond production, AI is also supporting functions such as 

logistics, data and information retrieval, and expense management.  

Several types of policy affect the development and diffusion of AI in industry. These include policies for education 

and training; access to expertise and advice; research support, policies on digital security, and liability rules 

(which particularly affect diffusion). In addition, while AI entrepreneurs might have the knowledge and financial 

resources to develop a proof-of-concept for a business, they sometimes lack the hardware and hardware 

expertise to build an AI company. As Chapter 5 describes, governments can help resolve such constraints.   

https://www.scientificamerican.com/author/davide-castelvecchi/
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Without large volumes of training data, many AI/ML models are inaccurate. Often, training data must be 

refreshed monthly or even daily. Data can also be scarce because many industrial applications are new or 

bespoke. Research may find ways to make AI/ML systems less data-hungry (and in some cases artificially 

created data can be helpful). For now, however, training data must be cultivated for most real-world 

applications. But many industrial companies do not have the in-house capabilities to exploit the value in 

their data, and are understandably reluctant to let others access their data. As Chapter 5 describes, some 

public programmes exist to bridge between company data and external analytic expertise. In addition, to 

help develop and share training data, governments can work with stakeholders to develop voluntary model 

agreements and programmes for trusted data sharing. More generally, governments can promote open-

data initiatives and data trusts, and ensure that public data exist in machine-readable formats. While such 

actions are not usually aimed at industry, they can be helpful to industrial firms in incidental ways (for 

instance in research, or in demand forecasting that draws on economic data, etc.).     

New materials and nanotechnology 

Advances in scientific instrumentation, such as atomic-force microscopes, and progress in computational 

simulation, have allowed scientists to study materials in more detail than ever before. Powerful computer 

modelling can help build desired properties such as corrosion resistance into new materials. It can also 

indicate how to use materials in products.   

Professional societies are working hard to develop a materials-information infrastructure to support 

materials discovery. This includes databases of materials’ behaviour, digital representations of materials’ 

microstructures and predicted structure-property relations, and associated data standards. Policy co-ordination 

at national and international levels could enhance efficiency and avoid duplicating such infrastructures. 

Closely related to new materials, nanotechnology involves the ability to work with phenomena and processes 

occurring at a scale of 1 to 100 billionths of 1 metre. The sophistication, expense and specialisation of tools 

needed for research in nanotechnology – some research buildings must even be purpose-built – make 

inter-institutional collaboration desirable. Publicly funded R&D programmes on nanotechnology could also 

allow collaboration with academia and industry from other countries. The Global Collaboration initiative 

under the European Union’s Horizon 2020 programme is an example of this approach. 

Developing digital skills 

Digitalisation raises demand for digital skills. For example, rapid improvements in AI systems have led to 

an overall scarcity of AI skills. Occupations like “industrial data scientist” and “bioinformatics scientists” are 

recent, reflecting a rate of technological change that is generating skills shortages. A dearth of data specialists 

is impeding the use of data analytics in business. Some countries also have too few teachers of computer 

programming (Stoet, 2016). A shortage of cybersecurity experts has led at least one university to recruit 

students to protect itself against hackers (Winick, 2018). Furthermore, the general-purpose nature of digital 

technology means that skills required to be a good scientist are also increasingly attractive in industry, 

adding to competition for talent (Somers, 2018). 

Rising demand for digital skills has implications for income distribution and economic productivity. In terms of 

income distribution, for instance, lack of ICT skills in low-skilled adult populations in semi-skilled occupations 

places this demographic group at high risk of losing jobs to automation. In terms of productivity, the ability of 

education and training systems to respond to changing skills demand affects the pace of technology adoption.  

Education and training systems must draw on information from all social partners 

Skills forecasting is prone to error. Just a few years ago, few could have foreseen that smartphones would 

so quickly disrupt, and in some cases end, a wide variety of products and industries, from notebook 
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computers and personal organisers to niche industries making musical metronomes and hand-held 

magnifying glasses (functions now available through mobile applications). Because foresight is inherently 

uncertain, education and training systems should draw on information about skills needs from businesses, 

trade unions, educational institutions and learners. Students, parents and employers also need access to 

data with which to judge the performance of educational institutions. In turn, resources in educational and 

training systems must flow efficiently to courses and institutions that best match skills demand. Institutions 

that play such roles include Sweden’s job security councils and SkillsFutureSingapore.  

New courses and curricula may be needed 

New courses and curricula may be needed to keep pace with rapid changes brought on by digitalisation. 

Advances in digital technology may require entirely new fields of tuition, such as dedicated programmes for 

the autonomous vehicle industry. Existing curricula may also need to change. For example, software engineers 

are effectively becoming social engineers. Society might benefit if they were to learn civics and philosophy, 

subjects rarely taught in science, technology, engineering and mathematics programmes (Susskind, 2018).  

In many countries, schools do not teach logic, and universities rarely teach logic outside of specialised 

courses. As a result, too few students learn the fundamental role of logic in AI. Many schools barely teach 

data analysis (King and Roberts, 2018). Various parts of this report also emphasise the need for greater 

multidisciplinary education. For instance, the bioeconomy increasingly requires degree programmes that 

combine biology, engineering and programming (Chapter 6). In addition, in many countries, male students 

far outnumber female students in some subjects, including AI. One recent survey of 23 countries found 

that, on average, 88% of researchers were male (Mantha and Hudson, 2018).2 

Lifelong learning must be an integral part of work 

In a context of significant technological change, lifelong learning must be an integral part of work. Achieving 

this demands greater collaboration between government and social partners to develop and/or fund 

appropriate programmes. Strong and widespread literacy, numeracy and problem-solving skills are critical, 

because these foundation skills provide the basis for subsequent acquisition of technical skills, whatever 

they may be in the future. Working with social partners, governments can help develop entirely new training 

programmes, such as conversion courses in AI for those already in work, and ensure effective systems of 

certification. Beyond technical know-how, workforce education can help impart other important skills, such 

as the ability to work well in teams and in complex social contexts, to be creative and exercise autonomy.  

Many countries have far-reaching programmes to develop digital technology skills. Using online tuition, 

Finland aims to teach every citizen the basics of AI. All Finnish students in initial education learn coding. 

Estonia is using public-private partnerships to teach coding and robotics. And the United Kingdom’s 

government recently committed up to GBP 115 million (EUR 134 million) for 1 000 students to complete 

doctoral degrees in AI. Digital technology is also creating novel ways to deliver skills (Box 1.2). 

Box 1.2. Using digital technology to deliver skills 

Digital technologies are beginning to facilitate skills development in new ways. In 2014, for example, 

Professor Ashok Joel and graduate students at Georgia Tech University created an AI teaching assistant 

– Jill Watson – to respond to online student questions. For months, students were unaware that the 

responses were non-human. iTalk2Learn, a European Union project, aims to develop an open-source 

intelligent platform for mathematics tutoring in primary schools. Researchers at Stanford University  

are developing systems to train crowdworkers using machine-curated material generated by other 

crowdworkers. In France, on an experimental basis, haptic technology – which allows a remote sense 

of touch – has shortened the time required to train surgeons, and promises many other applications.  
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Augmented reality (AR) uses computer vision to overlay objects in the user’s field of view with data and 

annotations (such as service manual instructions). Tesla has applied for a patent for an “Augmented 

Reality Application for Manufacturing”, built into safety glasses. With AR, skills such as those needed 

to repair breakdowns in complex machine environments will effectively become downloadable. 

Virtual reality (VR) environments could improve the speed and retention of learning, as is beginning in 

industry. Using VR, Bell Helicopter reports reducing a typical six-year aircraft design process to six months. 

Furthermore, Walmart has put 17 000 VR headsets in its US stores for training. VR could also permit safe 

and costless “learning by doing” for beginners in fields where this is otherwise too dangerous or expensive. 

The declining cost of VR and AR, and the integration of AR into mobile devices, should lower barriers to 

public participation in education, training and research. Elon Musk, for example, promises a high-definition 

VR live-stream of a future SpaceX moon mission (Craig, 2018). 

Facilitating the diffusion of digital technologies and tools 

Most countries, regions and companies are primarily technology users, rather than technology producers. 

For them, technology diffusion and adoption should be priorities. Technology diffusion helps raise labour 

productivity growth and may also lower inequality in wage growth rates. Policy makers tend to acknowledge 

the importance of technology diffusion, but to underemphasise it in the overall allocation of resources. 

Even in the most advanced economies, diffusion of technology can be slow or partial. For example, a 

survey of 4 500 German businesses in 2015 found that only 4% had implemented digitalised and networked 

production processes or had plans to do so (Chapter 5). One recent study examined 60 manufacturers in 

the United States with annual turnovers of between USD 500 million and USD 10 billion. The study found 

that just 5% had mapped where AI opportunities lie within their company and were developing a strategy 

for sourcing the data AI requires, while 56% had no plans to do so (Atkinson and Ezell, 2019). 

New digital technologies may make diffusion more difficult 

Certain features of new digital technologies could hinder diffusion. As technology becomes more complex, 

potential users must often sift through burgeoning amounts of information on rapidly changing technologies 

and knowledge requirements. Once the technology is chosen, deployment can pose difficulties as well. 

Even the initial step of collecting sensor data can be daunting. A typical industrial plant, for example, might 

contain machinery of many vintages from different manufacturers. This machinery may have control and 

automation systems from different vendors, all operating with different communication standards. To deploy 

AI, firms must often invest in costly information technology upgrades to merge data from disparate record-

keeping systems (consumer and supply-chain transactions are often separate, for instance). Firms also have 

unique challenges – from proprietary data types to specific compliance requirements. These conditions 

may require further research and customisation (Agrafioti, 2018). Difficulties in determining the rate of return 

on some AI investments may also hinder adoption. Furthermore, to understand how an AI system works, 

staff may need to take time away from other critical tasks (Bergstein, 2019). In addition, the expertise 

required for all of the above is scarce. 

Institutions for diffusion can be effective, if well designed 

As Chapters 4 and 5 discuss, various micro-economic and institutional settings facilitate diffusion. These range 

from supportive conditions for new-firm entry and growth, to economic and regulatory frameworks for efficient 

resource allocation. In addition to enabling framework conditions, effective institutions for technology diffusion 
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also matter. Institutions for diffusion range from applied technology centres such as the Fraunhofer Institutes 

in Germany to open technology mechanisms such as the Bio-Bricks Registry of Standard Biological Parts.  

New diffusion initiatives are emerging, often involving partnership-based approaches. An example is the 

US National Network for Manufacturing Innovation (NNMI). The NNMI uses private non-profit organisations 

as the hub of a network of company and university organisations to develop standards and prototypes in 

areas such as 3D printing and digital manufacturing. Some initiatives aim to facilitate the testing of new 

digital technology applications, such as by creating test beds, regulatory sandboxes, and state-of-the-art 

facilities as well as providing expertise. As Chapter 4 describes, the Industry Platform 4 FVG, in the Italian 

region of Friuli Venezia Giulia, is an example of an institution that offers access to testing equipment, 

prototyping tools and demonstration labs. 

To strengthen science, and the interface between science and industry, governments should also support 

platform technologies. These could include biofoundries, distributed R&D networks, data curation and digital/ 

genetic data storage. This is a public role because the associated investment risks are too high for the 

private sector. Moreover, for the private sector such investments may not provide a clear route to market. 

Technology diffusion institutions need realistic goals and time horizons  

Effective diffusion is more likely under two conditions. First, technology diffusion institutions must be 

empowered and resourced to take longer-term perspectives. Second, evaluation metrics must emphasise 

longer-run capability development rather than incremental outcomes and revenue generation. Introducing 

new ways to diffuse technology also takes experimentation. Yet many governments want quick and riskless 

results (Shapira and Youtie, 2017).  

Diffusion in SMEs involves particular challenges. In Europe, for example, as Chapter 5 describes, 36% of 

surveyed companies with 50 to 249 employees use industrial robots compared to 74% of companies with 

1 000 or more employees. Such discrepant patterns of technology use reflect, among other reasons, the 

more limited availability of digital skills in SMEs. For instance, only around 15% of European SMEs employ 

ICT specialists compared to 75% of large firms (Box 1.3). As Chapter 4 discusses, traditional instruments 

to foster technology adoption by SMEs – such as innovation vouchers and training – have been redesigned 

to meet specific challenges of the digital age, and often use digital tools themselves (for example, the SME 

4.0 Competence Centres in Germany). 

Box 1.3. Diffusing digital technology to SME : Some key considerations 

Various measures can help diffuse digital technology to SMEs, including: 

 Systematising key information for SMEs. For example, Germany’s Industry 4.0 initiative has 

documented over 300 uses cases of applications of digital industrial technologies, along with 

contacts to experts (www.plattform-i40.de).  

 Providing information on the expected return on investments in new technologies, as well as 

information on essential complementary organisational and process changes. 

 Providing signposts to reliable sources of SME-specific expertise, because the skills to absorb 

information are scarce in many SMEs. For example, as part of its “SMEs Go Digital Programme”, 

Singapore’s TechDepot provides a list of pre-approved digital technology and service solutions 

suited to SMEs. And Tooling U-SME, an American non-profit organisation owned by the Society 

of Manufacturing Engineers, provides online industrial manufacturing training and apprenticeship 

programmes. 

 Providing facilities where SMEs can test varieties and novel combinations of equipment to help 

de-risk prospective investments. 

http://www.plattform-i40.de/
https://en.wikipedia.org/wiki/SME_(society)
https://en.wikipedia.org/wiki/SME_(society)
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Committing to public sector research 

The technologies discussed in this publication have arisen because of advances in scientific knowledge and 

instrumentation. Publicly financed basic research has often been critical. For decades, for example, public 

funding supported progress in AI, including during periods of unproductive research. Today, AI attracts 

huge private investment. In this context, a recent hiatus – and in certain cases decline – in government 

support for research in some major economies is a concern (Figure 1.1). 

Figure 1.1. Trends in total R&D performance, OECD countries and selected economies, 1995-2015 

As a percentage of GDP 

 

Note: R&D = research and development; GDP = gross domestic product. 

Source: OECD (2017), OECD Science, Technology and Industry Scoreboard 2017: The Digital Transformation, http://dx.doi.org/10.1787/9789264268821-en. 

StatLink 2 https://doi.org/10.1787/888934075678 

Multidisciplinary research 

Various chapters in this publication stress the importance of multidisciplinary research. The importance of 

understanding the interplay between disciplines reflects the need to address complex and cross-cutting 

problems, the fact that new disciplines are born as knowledge expands, and the increased complexity of 

scientific equipment. It also reflects the frequent need to bring together different digital technologies. For 

example, developing the potential of haptic technologies – not least for uses in education and training – requires 

the combination of electrical engineering (communications, networking), computer science (AI, data science) 

and mechanical engineering (kinaesthetic robots) (Dohler, 2017). 

Policies on hiring, promotion and tenure, and funding systems that privilege traditional disciplines, may impede 

interdisciplinary research. Scientists need to know that working at the interface between disciplines will not 

jeopardise opportunities for tenure. Institutions that demonstrably support multidisciplinary research can 

provide useful lessons. Such cases include the United Kingdom’s Interdisciplinary Research Collaborations, 

networks in Germany to support biomedical nanotechnology, and individual institutions such as Harvard’s 

Wyss Institute for Biologically Inspired Engineering.  
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Public-private research partnerships 

The complexity of some emerging digitally based technologies exceeds the research capacities of even 

the largest individual firms. This necessitates a spectrum of public-private research partnerships. For example, 

materials science relies on computational modelling, enormous databases of materials’ properties and 

expensive research tools. It is almost impossible to gather an all-encompassing materials science R&D 

infrastructure in any single company or institute.  

Many possible targets exist for government R&D and commercialisation efforts to continue progress in the 

digital revolution. These range from quantum computing to new mathematics for big data. Box 1.4 presents 

a small selection of these ideas. 

Box 1.4. Public research goals relevant to the digital transformation of STI 

Responding to the end of Moore’s Law. In many digital devices, processing speeds, memory capacity, 

sensor density and accuracy, and even numbers of pixels are linked to Moore’s Law (the law asserts 

that the number of transistors on a microchip doubles about every two years). Atomic-level phenomena 

now limit the shrinkage of transistors on integrated circuits. Some experts believe a new computing 

paradigm is needed. The current computing paradigm is based on von Neumann’s design of the electronic 

computer. This architecture involves a channel for instructions that pass through one or more central 

processing units (CPUs) that retrieve data, compute and store results. This architecture, in which CPUs 

are a bottleneck, has not changed since 1948 (Damer, 2018). Hopes for significant advances in computing 

rest on research breakthroughs in optical computing (using photons instead of electrons), biological 

computing (storing data in and calculating using segments of DNA) and quantum computing. 

Advancing the development of quantum computing, communication and information. Quantum 

technology has mostly been a theoretical possibility until recently, but Google, IBM and others are now 

trialling practical applications. In 2017, Biogen worked with Accenture and quantum software company 

1QBit on a quantum-enabled application to accelerate drug discovery. Quantum technologies, if successful, 

could revolutionise certain types of computing. This would have strategic consequences for secure 

communication. Quantum computing still involves major research and technical challenges. For example, 

most of today’s quantum devices require operating temperatures near to absolute zero, as well as the 

development of new materials. Quantum computing, communication and information is becoming a priority 

for a number of governments. China plans to open a National Laboratory for Quantum Information Sciences 

in 2020, with USD 10 billion of investment.  

Creating more capable AI. Brooks (15 July 2018) observes that AI does not yet possess the object 

recognition of a two-year-old, the language understanding of a four-year-old, the manual dexterity of a 

six-year-old or the social understanding of an eight-year-old. While businesses far outspend governments 

on R&D for AI, much of this R&D focuses on application rather than breakthroughs in knowledge. 

Furthermore, Jordan (2018) observes that much research on human-like AI is not directly relevant to 

the major challenges involved in building safe intelligent infrastructures such as in medical or transport 

systems. Unlike human-imitative AI, such critical systems must have the ability to cope with “cloud-edge 

interactions in making timely, distributed decisions and they must deal with long-tail phenomena whereby 

there is lots of data on some individuals and little data on most individuals. They must address the 

difficulties of sharing data across administrative and competitive boundaries.”  

Many research challenges are important for public policy. These range from the explainability of AI, to the 

robustness of AI systems (image-recognition systems can easily be misled), to how much a priori knowledge 

AI might need to perform difficult tasks. Jordan (2018) also describes a number of major open research 

questions in classical human-imitative AI research. These include the need to bring meaning and reasoning 

into systems that perform natural language processing and the need to infer and represent causality.  
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Developing technology- and sector-specific capabilities in government   

Understanding major technologies is particularly important when these evolve quickly. For instance, one 

leading authority argues that converging developments in several technologies are about to yield a “Cambrian 

explosion” in robot diversity and use (Pratt, 2015). Without governments fully understanding technologies 

and sectors, strategic opportunities to benefit from digital technologies might be lost.  

Chapter 5 describes an example of this challenge. Technical and sector experts in the United States understand 

that a strategic opportunity exists to use metals-based 3D printing in commercial aviation. However, as an 

immature technology, metals-based 3D printing does not meet the stringent tolerances and high reliability 

needed in aviation. Targeted policy could change this, with measures ranging from funding and curating 

databases on materials’ properties, to brokering essential data-sharing agreements (DSAs) across government 

laboratories, academia and users of metals-based 3D printing. Perceiving and successfully acting on such 

opportunities require technical and sectoral expertise. 

Regulation, when used, also needs deep technology and industry-specific understanding. The effects of 

regulation on innovation can be complex, of uncertain duration and ambiguous, making them difficult to 

predict. Calls to regulate AI highlight the need for expertise in government, so that any regulation of this 

fast-evolving technology does more good than harm. Developments in fast-changing technologies such as 

AI may also require that regulatory processes become more anticipatory and innovative. As Chapter 4 

describes, three policy domains require a sectoral approach for designing new initiatives: data access 

policies, given the diversity of data types in different sectors; digital technology adoption and diffusion 

policies; and policies supporting the development of sectoral applications of digital technologies.   

Technical expertise in government will help avoid unrealistic expectations about new technologies, especially 

those emerging from science (such as quantum computing). New discoveries and technologies often attract 

hyperbole. No more than 6 years ago, for example, massive open online courses (MOOCs) were widely 

held to represent a democratising transformation in postsecondary education. However, recent research 

shows that less than 12% of MOOC students return for a second year, and most students come from 

affluent families in rich countries (Reich and Ruipérez-Valiente, 2019).  

Similarly, many hailed Bitcoin as the democratisation of money. Indeed, a 2013 article in WIRED called 

Bitcoin “the great equalizer” (Hernandez, 2013). However, by 2017 just 1 000 users owned 40% of Bitcoin 

(Kharif, 2017). Public discussion of AI also involves wildly varying accounts of its likely impacts. AI-related 

hyperbole may even have particular psychological roots: experiments show that subjects unconsciously 

anthropomorphise AI and robots (Fussell et al., 2008). 

Effective sectoral support requires, as a first step, mechanisms to strengthen policy intelligence. As Chapter 4 

discusses, these mechanisms include roadmaps or sectoral plans prepared with industry and social partners. 

One example is the Sector Competitiveness Plans developed by Industry Growth Centres in Australia. 

Developing a shared vision for the future, with industry and social partners, is also useful. 

Ensuring access to complementary infrastructures 

Certain types of infrastructure help to utilise digital technology. These include HPC, cloud computing and 

fibre-optic connectivity. HPC is increasingly important for firms in industries ranging from construction  

and pharmaceuticals to the automotive sector and aerospace. In manufacturing, the use of HPC is going 

beyond applications such as design and simulation to encompass real-time control of complex production 

processes. However, like other digital technologies, manufacturing’s use of HPC falls short of potential. A 

number of possible ways forward exist. SMEs could receive low-cost, or free, limited experimental use of 

HPC, while online software libraries/clearing houses could help disseminate innovative HPC software to a 

wider industrial base. 
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Industry 4.0 requires increased data sharing across production sites and company boundaries (Chapter 5). 

For example, BMW aims to know the real-time status of production equipment at every company that produces 

key components for its vehicles. Increasingly, machine data and data analytics, and even monitoring and 

control systems, will operate in the cloud. The cloud will also allow independent AI projects to start small, 

and scale up or down as required. Indeed, Google’s chief AI scientist, Fei-Fei Li, argues that cloud computing 

will democratise AI.3 Cloud computing will also increasingly help data sharing and analysis in science: 

Amazon Web Services, for instance, participates in the 1 000 Genomes Project, helping researchers to 

access and analyse vast amounts of cloud-based genetic data. However, cloud use varies greatly between 

small and large firms, and across countries. For example, only 20% of Austrian manufacturers used cloud 

computing in 2016. By comparison, in Finland, the country with the highest incidence of cloud use in 

manufacturing in the OECD, the rate was 69% (OECD, 2018b).  

Broadband networks – especially fibre-optic connectivity – are also essential to Industry 4.0. Policy priorities 

here include overhauling laws governing the speed and coverage of communication services. Policies to 

promote competition and private investment, as well as independent and evidence-based regulation, have 

also helped extend coverage. In addition, new technology could expand services in underserved areas. A 

case in point is the delivery of broadband through “White Spaces”, the gaps in radio spectrum between 

digital terrestrial television channels.  

Improving digital security 

Among other issues, digital technology is creating wholly new sources of risk. For example, as Chapter 5 

observes, with respect to new materials, a novel risk could arise because, in a medium-term future, materials 

development processes based on computer simulations could be hackable. Chapter 6 notes that bio-production 

relies heavily on data, IP and research, all of which need protection from cyber-attack. Companies in the 

bioeconomy are elevating cybersecurity to a strategic imperative, but at a pace that lags behind their desire 

to adopt digital technologies. Enhancing trust in digital services is also critical to data sharing and, in some 

countries, uptake of cloud services. 

While challenging to measure, digital security incidents appear to be increasing in terms of sophistication, 

frequency and influence. New digital security solutions are emerging, such as homomorphic encryption, 

through which data remains encrypted even when being computed on in the cloud. The technological race 

between hackers and their targets is nevertheless unrelenting. Government awareness-raising initiatives are 

important. SMEs, in particular, need to introduce or improve their digital security risk management practices.  

Chapter 6 suggests that governments could encourage timely sharing of information on digital security threats. 

Public sector actors could also run cyber-attack simulations and share the lessons learned. Voluntary 

standards, regulations, industry programmes and information-sharing networks could draw attention to 

digital security enhancements. In addition, in public-private research partnerships, individual facilities could 

be encouraged to develop and validate methods for staff or external service providers to strengthen digital 

security. OECD (2019) includes detailed recommendations on digital security. These focus on managing 

rather than eliminating digital security risk – among individuals, firms and governments – because some 

degree of risk is inevitable. 

Examining intellectual property systems in light of digitalisation  

New digital technologies are raising new challenges for IP systems. 3D printing, for example, might create 

complications in connection with patent eligibility. For instance, if 3D-printed human tissue improves upon 

natural human tissue, it may be eligible for patenting, even though natural human tissue is not. Ensuring 

legal clarity around IPRs is also important for 3D printing of spare parts (when printed by anyone other 

than the original equipment manufacturer).  
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More fundamentally, a world in which machines can invent could require new patenting frameworks. For 

example, AI systems that automatically – and unpredictably – learn from many publicly available sources 

of information could complicate the task of identifying deliberate infringements of patent laws. In another 

example, a licensor might hold IP rights on an AI system and license this. The licensee might run the AI 

system using data on which it too has IP rights (as certain jurisdictions permit protection of data ownership). 

This might lead to an improvement in the AI system. A conflict might thereby arise with respect to ownership 

of the improved AI. Current IP law is also silent on the issue of whether AI can itself acquire IP rights.  

All the chapters in this report address different types of standards. For instance, Chapter 5 shows that 

Industry 4.0 currently involves more than 100 standards initiatives. Chapter 6 likewise explains that in the 

bioeconomy, standards for product and process interoperability directly affect issues of IP.  

Countries and firms that play primary roles in setting international standards can enjoy advantages if new 

standards align with their own national standards and/or features of their productive base. The public 

sector’s role should be to encourage industry, including firms of different sizes, to participate at early stages 

in international (and in some cases national) standards setting. Dedicated support could aim to include 

under-represented groups of firms in standards development processes. Relevant public agencies should 

also pursue standards development in the research system. 

Optimising digital systems to strengthen science and innovation policies 

Chapter 7 examines digital science and innovation policy (DSIP) systems. DSIP systems use digital procedures 

and infrastructures to help formulate and deliver science and innovation policy. They are used to monitor 

policy interventions, develop new STI indicators, assess funding gaps, strengthen technology foresight, and 

identify leading experts and organisations. Data are mainly sourced from funding agencies (e.g. databases of 

grant awards), R&D-performing organisations, proprietary bibliometric and patent databases, and the web.  

There are various types of DSIP systems. Databases of public funders are one type, of which Belgium’s 

Flanders Research Information Space (FRIS) is an example. The FRIS portal, launched in 2011, aims to 

accelerate innovation, support science and innovation policy making, share information on publicly funded 

research with citizens, and reduce the administrative burden of research reporting.  

A second type of DSIP infrastructure is a Current Research Information System. Through the Estonian 

Research Information System (ETIS), for example, Estonian higher education institutions (HEIs) manage 

research information and showcase research. Public funders use ETIS to evaluate and process grant 

applications. National research assessments and evaluations also draw on ETIS.  

A third type of DSIP infrastructure is what might be termed an “intelligent system”. For example, to examine 

the socio-economic impacts of research, Japan’s SciREX Policymaking Intelligent Assistance System (SPIAS) 

uses big data and semantic technologies (which aim to extract meaning from data). They help to process 

data on Japan’s research outputs and impacts, funding, R&D-performing organisations and research projects.  

Chapter 7 discusses three main challenges facing DSIP systems: ensuring the interoperability of diverse 

data sets; preventing misuses of DSIP systems in research assessments; and managing the roles of non-

government actors, particularly the private sector, in developing and operating parts of DSIP systems. The 

following subsections briefly describe these three themes. 

Ensuring interoperability in DSIP systems 

DSIP systems pull data from multiple sources, linking them to gain policy insights that are otherwise 

impossible to achieve. But linking data is highly problematic, chiefly on account of different data standards. 

Recent years have seen attempts to establish international standards and vocabularies to improve data 

sharing and interoperability in science and research management. These include unique, persistent and 
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pervasive identifiers, which assign a standardised code unique to each research entity, persistent over time 

and pervasive across datasets. Many DSIP infrastructures have adopted such standards to link data from 

universities, funding bodies and publication databases, thereby relating research inputs to research outputs. 

Using DSIP systems in research assessment 

Many metrics aim to quantify scientific quality, impact and prestige. More than half of the DSIP systems 

identified in OECD work play a role in research assessment. The growing digital footprint of academic and 

research activities suggests that, in future, most relevant dimensions of research activity might be represented 

digitally. In this connection, the altmetrics movement promotes metrics generated from social media as a 

type of evidence of research impact that is broader and timelier than academic citations. However, as with 

traditional metrics, questions remain over the extent to which altmetrics afford valid signals of research impact.  

The roles of the business sector in DSIP  

Non-government actors are emerging as a main force in DSIP systems. The large academic publishers, 

Elsevier and Holtzbrinck Publishing Group, together with the analytics firm, Clarivate Analytics, are particularly 

active in developing products and services into platforms that mimic fully fledged DSIP systems. Multinational 

corporations like Alphabet Inc. and Microsoft Inc., and national technology companies such as Baidu Inc. 

(China) and Naver Inc. (Korea), have also designed platforms to search academic outputs. In the future, 

these platforms could become key elements in national DSIP systems.  

Harnessing these private sector developments in public DSIP systems has many potential benefits. 

Solutions can be implemented quickly and at an agreed cost, sparing the public sector the need to develop 

in-house skills beforehand. Private companies can promote interoperability through their standards and 

products, which can expand the scope and scale of data used in a DSIP system. However, outsourcing 

data management activities to the private sector may bring risks. These could include loss of control over 

the future development of DSIP systems, discriminatory access to data and even the emergence of private 

platforms that become dominant because of hard-to-contest network effects.  

The outlook for DSIP systems 

Governments need to shape DSIP ecosystems to fit their needs. This will require interagency co-ordination, 

sharing of resources (such as standard digital identifiers) and coherent policy frameworks for data sharing 

and reuse in the public sector. Since several government ministries and agencies formulate science and 

innovation policy, DSIP systems should involve co-design, co-creation and co-governance. In a desirable 

future, DSIP infrastructures will provide multiple actors in STI with up-to-date linked microdata. Policy 

frameworks will have resolved privacy and security concerns, and national and international co-operation 

on metadata standards will have addressed interoperability issues.  

Digitalisation in science and innovation: Possible “dark sides” 

The thrust of this report is that digitalisation offers many positive opportunities for STI, so long as 

complementary policies receive proper attention. This subsection considers the possibility of unwelcome 

outcomes from digitalisation in STI. These include widening capability gaps across countries and subnational 

regions, negative effects on science processes, excessive complexity in machine ecosystems, and risks that 

are diffuse, hard to foresee and primarily social. Evidence on the likelihood or scale of these undesirable 

outcomes is scant. A conclusion from this subsection, therefore, is the need for greater awareness and further 

study. Public concerns about automation, jobs and inequality, where the literature is vast, are not discussed. 
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Distributional effects and digitalisation of STI 

Aspects of digitalisation could widen gaps in STI capability and income across countries and regions. Three 

possibilities are considered here: 

Centralisation effects in science. Science increasingly occurs within data (Hey, Tansley and Tolle, 2009). 

Developed countries have a comparative advantage in capital-intensive scientific tools that generate data. 

It is an open question whether these conditions might affect the broad geography of scientific activity. In one 

scenario, with suitable data access, developing-country researchers might be able to do science without 

making the sorts of capital investments made by developed countries. In another, researchers in developed 

countries might strengthen their existing advantages in leading-edge science. As a narrower but possibly 

related issue, laboratory automation is now essential to many areas of science and technology, but is 

expensive and difficult to use. Consequently, laboratory automation is most economical in large central 

sites, and companies and universities are increasingly concentrating their laboratory automation. The most 

advanced example of this trend is cloud automation in biological science. Biological samples are sent to a 

single site and scientists design their experiments using application programming interfaces (King and 

Roberts, 2018). The effect of such cloud-based possibilities on the overall dispersion or concentration of 

scientific work is unclear.  

Effects on subnational geographies. The digital economy may exacerbate geographic disparities in income, 

as it amplifies the economic and social effects of initial skills endowments (Moretti, 2012). In many OECD 

countries, income convergence across subnational regions has either halted, or reversed, in recent decades 

(Ganong and Shoag, 2015). Among remedial policies, investments in skills and technology are most important 

(because investments in infrastructure and transport, while often beneficial, also have diminishing returns 

(Filippetti and Peyrache, 2013). 

Effects from supercomputing. Today, some supercomputers are designed specifically for AI. Previously, 

supercomputers were used mostly for modelling, such as in climate and nuclear science. Many tech 

companies are orienting towards supercomputing (Knight, 2017). Worldwide, however, only 27 countries 

possess a supercomputer listed among the top 500 most powerful. China, notably, has made major strides 

in building supercomputers with domestically produced components. China also boasts large numbers of 

supercomputers, along with abundant data to train AI algorithms. Might capabilities across countries 

diverge because of increasing synergy between supercomputing and AI? Will the value of owning/building 

increasingly powerful supercomputers change relative to using cloud-based computing?  

Complex systems and unmanageable machine ecologies 

Governments need improved understanding of complex systems (Nesse, 2014). As a wide array of critical 

systems becomes more complex, mediated and interlinked by code, the risk and consequences of vulnerabilities 

could increase. As code controls a growing number of connected systems, errors can cascade, with effects 

that become more extensive than in the past. For instance, owing to software faults, the United States 

recently experienced the first national – rather than local – 911 outages (Somers, 2017). Critical ICT systems 

might behave in unpredictable and even emergent ways, and the ability to anticipate failures in technology 

could diminish (Arbesman, 2016). A widely publicised case was the unexpected interaction of algorithms 

that contributed to the “Flash Crash” of May 2010, when more than 1 trillion dollars in value was lost from 

global stock markets in minutes. However, many more examples exist of software errors that caused 

system failures. In 1996, for instance, the European Space Agency’s Arianne 5 rocket exploded on launch 

owing to a software glitch.4   

AI and other measures will help to automate and improve software verification. Nevertheless, as the 

physicist Max Tegmark observes “the very task of verification will get more difficult as software moves into 

robots and new environments, and as traditional pre-programmed software gets replaced by AI systems 

that keep learning, thereby changing their behaviour…” (Tegmark, 2017).  
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An inbuilt feature of technology is that it deepens complexity: systems accumulate parts over time, and 

more connections develop between those parts. Technologies that become more complex can end up 

depending on antiquated legacy systems. This is especially so for code. For example, in the lead up to  

1 January 2000, amid Y2K concerns, the US Federal Aviation Administration examined computers used 

for air traffic control. One type of machine required fixing, an IBM 3083 that had been installed in the 1980s. 

However, only two persons at IBM knew the machine’s software, and both had retired (Arbesman, 2016).  

Negative impacts on science from digitalisation 

This chapter has already described a number of challenges that digitalisation raises for science – from 

coping with predatory online science journals to keeping personal research data anonymous. Chapter 2 – 

on measurement – reports that a sizeable number of scientists think digitalisation will have at least some 

negative impacts on science. These potential impacts include the growth of hypothesis-free research in 

data-driven science, and divides in research between those who possess advanced digital competences 

and those who don’t. Digitalisation could also encourage a celebrity culture in science, lead to premature 

diffusion of research findings and expose individuals to pressure groups. Other concerns are the use of 

readily available but inappropriate indicators for monitoring and incentivising research, and the potential 

concentration of workflows and data in the hands of a few companies providing digital tools.  

Another potentially problematic issue is the misapplication of AI in science and society. The design and 

use of effective AI systems requires expertise which is scarce. Moreover, stricter requirements on performance, 

robustness, predictability and safety will increase the need for expertise. This is especially true for deep 

learning techniques that are now central to AI research and applications.  

With expertise bottlenecks and, sometimes, unrealistic expectations about what AI can achieve, non-experts 

are increasingly deploying AI. Such systems often suffer from deficiencies in performance, robustness, 

predictability and safety, outcomes that even AI experts can struggle to achieve (Hoos, 2018). Hoos and 

others propose building a next generation of AI systems known as Automated AI as one way to alleviate 

the AI complexity problem. This could help develop and deploy accurate and reliable AI without the need 

for deep and highly specialised AI expertise. Automated AI builds on work on automated algorithm design, 

and automated ML, which is developing rapidly in academia and industry (Hoos, 2012).  

Wider risks linked to digital technology 

Like all technology, digital technologies can help and harm. AI, for instance, can increase digital security 

by predicting where threats originate, but it can decrease digital security by adding intelligence to malware. 

Synthetic biology can help cure disease, but it can also make pathogens more virulent. Some risks of digital 

technology reflect complex interactions with social systems and as such may be impossible to foresee.  

Today, one risk is the fragmentation of public discourse by social media. The future might also see a loss 

of trust in accredited information owing to high-fidelity audio and video fakes. In addition, the diminished 

economic viability of journalism and literary writing, a development attributed to digital technology, could 

have unwanted social and political effects (de León, 2019).  

Harari (2018) even suggests the future of computing could shape the future of democracy. Autocracy, he notes, 

has generally failed in advanced economies, partly because information processing could not be centralised 

sufficiently. Decentralised information processing gives democracies an efficiency advantage. However, if 

AI comes to encompass ever more of the digital economy, it may have a centralising tendency. AI will also 

become more effective as data are concentrated. Harari (2018) suggests that finding ways to keep distributed 

data processing more efficient than centralised data processing could ultimately help safeguard democracy. 

Policy makers can take additional steps to mitigate emerging risks brought on by the dual-use nature of 

technology. Past episodes in the history of science might provide useful lessons. The case of Paul Berg, 

the Nobel laureate who helped create recombinant DNA, is one example. Aware of the ramifications of his 
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discovery, Berg convened the Asilomar Conference. This led to a moratorium on the most dangerous 

experiments until the science improved.  

Policy makers can mitigate technological risk in several ways. They can earmark part of research budgets 

to study the broader implications of science. Engaging the public in debate, while avoiding hyperbole about 

technology, is useful. In addition, they can ensure that science advice is trustworthy. Investments in research 

and innovations that reduce risk (such as in cyber-security) might also help. 

The untapped potential of digital technology for STI policy 

This section explores new ideas for how digital technology might support policy for science and innovation. 

Earlier, Box 1.1 described new thinking on collective intelligence and the allocation of public research 

funds. Other examples considered here are prediction markets, various applications of blockchain, and 

using social media to increase exposure to innovation in a selective way. Some of these ideas have yet to 

receive significant attention, and few governments have experimented with the opportunities available.  

Prediction markets for STI policy 

Prediction markets, which involve trading bets on whether some specific outcome will occur, could inform 

STI policy. Prediction markets have outperformed the judgement of experts in forecasting outcomes in fields 

as diverse as sporting tournaments and political elections. They aggregate decentralised private information, 

which is captured in the changing price of the next bet on the outcome in question (in a similar way to a 

futures market). Prediction markets incentivise participants to find or generate new information (from which 

profit could derive). Recent experiments (see Dreber et al. [2019], Munafo et al. [2015], Dreber et al. [2015] 

and Almenberg, Kittlitz and Pfeiffer [2009]) show that prediction markets might accomplish the following:  

 Predict the results of otherwise expensive research evaluations (e.g. of HEIs).  

 Quickly and inexpensively identify research findings that are unlikely to replicate.  

 Help optimally allocate limited resources for replications.  

 Help institutions assess whether strategic actions to improve research quality are achieving their goals.  

 Test scientific hypotheses. 

 Help understand specific scientific processes. For instance, a research project could be examined 

alongside a history of the project’s market prices, to show when hypotheses had strengthened or 

weakened (Dreber et al., 2015).  

Specialised digital platforms make it easier to implement prediction markets. On the Augur platform, for 

example, with an initial commitment of less than a dollar, anyone can ask a question and create a market 

based on a predicted outcome. Using prediction markets in STI appears more constrained by tradition than 

by technical infeasibility. 

Prediction using human-machine combinations 

Human intelligence (of individuals or crowds) and machine intelligence could be combined for prediction 

and research. For instance, researchers at Stanford University and Unanimous AI, a California-based 

company, connected small groups of radiologists over the Internet using AI, and tested their ability to 

diagnose chest X-rays. Radiologists and algorithms together were more accurate than the unaided group. 

They were even more accurate than individual radiologists, and 22% more accurate than state-of-the-art 

AI alone (Rosenberg et al., 2018). 

Accurate foresight is particularly elusive when technological change is radical. One complication is that it 

often takes considerable time before the main applications of radical innovations emerge. After Gutenberg, 
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for example, it took nearly a century of technical and conceptual improvements to arrive at the modern 

book (Somers, 2018).  

Indeed, even the most knowledgeable experts frequently misjudge technological timelines. In the digital 

sphere, one example of such misjudgement is the 1955 proposal for the Dartmouth Summer Research 

Project on Artificial Intelligence, a seminal event in the history of AI. The proposal stated that a significant 

advance in AI could be made “…if a carefully selected group of scientists work on it for a summer”. Whether 

using prediction markets, a human-machine approach or other methods, harnessing collective intelligence 

might strengthen policy foresight.  

Blockchain for science, technology and innovation 

One leading commentator has described blockchain as follows: “blockchain technology facilitates peer-to-

peer transactions without any intermediary such as a bank or governing body…the blockchain validates 

and keeps a permanent public record of all transactions. This means that personal information is private 

and secure, while all activity is transparent and incorruptible – reconciled by mass collaboration and stored 

in code on a digital ledger” (Tapscott, 2015). As Chapter 5 discusses, while blockchain applications in 

production are still incipient, companies such as Microsoft, IBM and others now offer commercial 

blockchain services. Proposals to use blockchain in STI are flourishing (Box 1.5).  

Box 1.5. Possible applications of blockchain in science and innovation 

Recent proposals for how blockchain might benefit STI include the following: 

Establishing a cryptocurrency for science. Using a cryptocurrency, publishers of scientific works could 

receive micro-payments as content is consumed. A science cryptocurrency could also facilitate a system 

of rewards for sometimes under-rewarded activities such as statistical support, exchange of lab equipment, 

data hosting and curation, and peer review (van Rossum, 2018). Science Matters – an OA publishing 

platform – will soon implement a crowdsourced peer-review process using the Ethereum blockchain. 

Ideally, researchers and publishers will quickly see metrics that can help expedite publication. Furthermore, 

for their time, reviewers will also receive cryptocurrency linked to the platform (Heaven, 2019).  

Storing and sharing research data. Databases that encompass large parts of the research ecosystem 

are technically possible. However, the need for centralised management and ownership complicates 

their implementation. Data security and ease of access are just some of the concerns. In principle, the 

blockchain could make scalable, safe and decentralised data stores more practical. It could also enhance 

the reproducibility of science by automatically tracking and recording work such as statistical analysis, 

while reducing the risk of data fraud. In addition, metrics could be developed for activities that are not 

well recognised, such as data development, because they could be clearly attributed (van Rossum, 2018).  

Enabling data use. Data sharing can be difficult for several reasons, including institutional and technical 

issues, as well as regulations. Institutional obstacles include bureaucratic processes that hinder permission 

to share data. Even when a DSA is reached, data holders still worry about inappropriate use of their 

data, or about accidental sharing of client data. Furthermore, on a technical level, some datasets are just 

too big to share easily. For instance, 100 human genomes could consume 30 000 000 MB. Uncertainty 

about the provenance of data can also hinder data sharing or purchase. In addition, regulators might 

increasingly require that AI systems demonstrate auditable data use. In this environment, efforts are 

underway to link blockchain and AI in a system that gives data holders the benefits of data collaboration, 

but with full control and verifiable audit. Ocean Protocol, an open-source not-for-profit foundation, is 

pioneering such a system. Under one use case, data are neither shared nor copied. Instead, algorithms go 

to the data for training purposes, with all work on the data recorded in a distributed ledger (Chhabra, 2018). 



44  1. AN OVERVIEW OF KEY DEVELOPMENTS AND POLICIES 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

 

Making ownership of creative material transparent. Commercial services now offer secure attribution 

of ownership of creative works by providing a blockchain-verified cryptographic ID (Stankovic, 2018). 

Launched in 2018, Artifacts is a platform for publishing any material that researchers consider worth 

sharing. This ranges from data sets to single observations, hypotheses and negative research results, 

all logged to the blockchain. Artifacts aims to disseminate more scientific information, securely and in 

citable ways, more quickly than occurs with peer-reviewed written articles (Heaven, 2019).   

Broadening access to supercomputing. Golem aims to create a global supercomputer, accessible 

to anyone, using processing power from idle computers and data centres around the world. Users would 

rent processing time from each other, and rely on blockchain to track computations and payments, and 

to keep data secure (Golem, n.d.). 

Technical and policy challenges such as interoperability must be resolved before blockchain in STI can be 

widely deployed. Without consensus on the protocols in blockchain and other DLTs, use will be limited. 

One effort towards consensus, IBM’s Hyperledger, seeks an interoperable architecture for DLTs. Technical 

limits also exist on the volume of transactions that blockchain networks can process. However, the 

scalability challenge is less severe for so-called permissioned blockchain applications – where participation 

in the network is controlled. Permissioned blockchain networks are the most likely in STI, because they 

will generally be used to help a particular professional community achieve some policy-relevant outcome. 

Mechanisms to ensure the veracity of information in a blockchain registry are lacking (although efforts are 

underway to establish the veracity of the identity of those feeding information into the blockchain).5 

Agreement is also lacking on how to terminate a so-called smart contract – a contract that executes itself, 

enabled by blockchain – and how to treat smart contracts that contain errors or illegal instructions. The 

tamper-proof design of the blockchain could also be problematic if the system prevents corrections, even 

when necessary (Stankovic, 2018). 

Using social media to spread innovation 

People’s propensity to innovate involves an element of imitation. Research shows that children who grow 

up in areas with more inventors are more likely to become inventors. Greater exposure to innovation among 

minorities and children from low-income families might increase the prevalence of innovation. Among other 

measures, social media could provide a channel for targeted interventions (Bell et al., 2019). 

Conclusion 

Scientific progress cannot be taken for granted. There are many areas of science – fundamental to human 

well-being – where knowledge is still surprisingly limited. For example, the process by which E. coli  

(a bacterium) consumes sugar for energy is one of the most basic biological functions, and also important 

for industry. But how the process operates has not been fully established, even though research on the 

subject was first published over 70 years ago. Uncertainty also exists on many critical questions in climate 

science. To name a few, what is the tipping point for the inversion of the flows of cold and hot oceanic 

waters? When could changes become irreversible (e.g. melting of West Antarctic or Greenland ice-

shelves)? What is the quantitative role of plants and microbes in the carbon cycle?  

Progress in STI is also necessary because, despite striking advances in technology, the pace of innovation 

is insufficient in some crucial fields. For instance, today’s leading energy generation technologies were 

mostly developed or demonstrated over a century ago. The combustion turbine was invented in 1791, the 

fuel cell in 1842, the hydro-electric turbine in 1878 and the solar photo-voltaic cell in 1883. Even the first 

nuclear power plant began operating over 60 years ago. The performance of all these technologies has, 
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of course, improved. But truly disruptive breakthroughs have not occurred (Webber et al., 2013). Indeed, 

some high-profile commentators from academia and industry have gone further, claiming (debatably) that 

a more general innovation plateau has been reached.  

Furthermore, efficient and effective policies for STI are ever more important in countries where rapid 

population ageing is likely to constrain discretionary public spending over the long run. 

For these and other reasons examined in this publication, utilising the full potential of digital technology in 

STI is important.  
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Chapter 2 examines the digitalisation of science and innovation drawing on 

statistical measurement and analysis by the OECD’s Working Party of 

National Experts on Science and Technology Indicators, including material 

featured in the OECD report Measuring the Digital Transformation. This 

chapter maps the ICT specialisation of research and the growth of scientific 

production and government funding of research related to artificial intelligence. 

It examines the multidimensional nature of the digital transformation of 

science. This chapter also shows how innovation in firms can be linked to the 

adoption of digital technologies and business practices. It concludes by 

summarising possible next steps for OECD’s own measurement agenda. 

The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of 

such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements 

in the West Bank under the terms of international law.  

2 How are science, technology  

and innovation going digital?  

The statistical evidence 
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Introduction 

Hardly a day goes by without the traditional or social media highlighting how digitally driven scientific or 

technological breakthroughs might transform daily life. Much computer speech and image recognition has 

attained human-like levels of performance, while self-driving cars are gradually improving their safety record. 

Media attention to such breakthroughs is provoking a deeper reflection among policy makers concerned 

with science, technology and innovation (STI). How is the nature of science and innovation itself changing? 

How, if at all, should this change be managed?  

The public’s exposure to the accumulation of anecdotal evidence on the digital transformation of science 

and innovation builds views of change shaped by how close they are to specific developments. But how 

widespread are those specific developments? Which practices have fully broken into the mainstream? Which 

practices remain the preserve of relatively small communities at the leading edge? Do different facets of 

digitalisation complement or offset each other? Is debate excessively focused on practices that are no 

longer at the forefront, and are incipient signals about the direction of change being missed?  

Addressing these questions requires a comprehensive view of how science and innovation are “going 

digital”. The digital revolution is based on the growing possibilities to create and use data, information and 

knowledge, and ultimately to support decision making, science and innovation policy. As such, it requires 

data and measurement that help map the ongoing transformations, their causes and their effects.  

This chapter reports on some key features and trends in the digitalisation of science and innovation. To 

that end, it draws principally on statistical measurement and analysis under the aegis of the OECD’s 

Working Party of National Experts on Science and Technology Indicators (NESTI), including contributions 

featured in the report titled Measuring the Digital Transformation: A Roadmap for the Future (OECD, 2019a), 

a publication that provides a broad statistical and measurement-oriented view of digitalisation and accompanies 

the OECD report Going Digital: Shaping Policies, Improving Lives. Both in and outside the OECD, work to 

measure digitalisation is also a basis for collective choices about the data that policy makers wish to have 

and act upon (see Chapter 7). This chapter provides a number of reflections on measurement gaps and 

what can be done, and is being done, to address them.  

Given the breadth of digitalisation’s influence, and the available evidence, some perspective is needed. 

Historically, the development of science and technology have been intertwined. Innovation in measurement 

tools provided a means to improve scientific understanding of nature, and this knowledge also turned out 

to be essential for innovation. Each wave of widespread technological development has raised the question 

of what makes it truly distinctive and unique and how it might affect science and innovation (Furman, 2016). 

For the current wave of digitalisation, several core questions emerge about the distinctiveness of new digital 

technology. What does it enable that was previously impossible or prohibitively expensive? In addition, 

how will the key features of digital technology, e.g. various externalities, contribute to further developments 

that could lead to its more intensive use?  

Chapter 2 examines how the science system contributes to developing capabilities that can support the 

digital transition and how the former is impacted by changes in the possibilities and costs associated with digital 

economic activity (Goldfarb and Tucker, 2017). In science, as in several other fields, the greater information 

availability brought about by the digital revolution does not necessarily result in greater information quality. 

Not surprisingly, then, considerable effort in science and innovation aims to deploy digital technologies to 

help make information useful for meaningful and reliable quality assurance, classification and prediction.  

As a result, this chapter also dedicates space to discussing trends and features of research activity related 

to automating human-like cognitive functions through artificial intelligence (AI). AI is considered to be both 

a general-purpose technology – i.e. it has a wide domain of applications – as well as a new method of 

research and invention (Agrawal, Gans and Goldfarb, 2018; Cockburn, Henderson and Stern, 2018; Klinger, 

Mateos-Garcia and Stathoulopoulos, 2018). Other developments, such as those related to developing 

computer enabled tamper-proof mechanisms for trust and assurance, are not covered here for reasons of 

space and limited statistical evidence, but can be just as important.  
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Science going digital  

Scientific research on digital technologies  

Advances in scientific knowledge are key to developing new digital technologies. Over the last decade, the 

People’s Republic of China (hereafter “China”) almost trebled its contribution to computer science journals. 

In so doing, it overtook the United States in the production of scientific documents in this field. However, 

China’s share of documents that are in the world’s top-cited (top 10%, normalised by type of document 

and field) is still close to 7%, well below the United States at 17% (Figure 2.1).  

Figure 2.1. Top 10% most cited documents in computer science, by country, 2016 

Percentage of domestic documents (fractional counts) in the top 10% citation-ranked documents  

 

Notes: Computer science publications consist of citeable documents (articles, conference proceedings and reviews) featured in journals 

specialising in this field. “Top-cited publications” are the 10% most cited papers normalised by scientific field and type of document. Instead of 

counting a publication repeatedly if two or more countries contribute to it, fractional counting distributes such publication across contributors so 

that all publications have the same equal weight.  

Source: OECD (2019a), Measuring the Digital Transformation: A Roadmap for the Future, https://doi.org/10.1787/9789264311992-en. 

StatLink 2 https://doi.org/10.1787/888934075697 

China’s share of highly cited papers has nonetheless more than doubled since 2006. This makes it the 

second largest producer of highly cited computer science publications worldwide. In some countries, such 

as Italy, Israel, Luxembourg and Poland, scientific research in the field of computer science has a much 

higher citation rate than overall scientific production in those countries. Nearly 20% of computer science 

publications by Switzerland-based authors feature among the world’s top 10% cited scientific documents. 

This figure reaches 25% for Luxembourg, although with a much smaller level of scientific production. 

Scientific research and artificial intelligence  

Scientific production  

AI research has aimed for decades to allow machines to perform human-like cognitive functions. Breakthroughs 

in computational power, the availability of data and algorithms have raised the capabilities of AI. In some 

19
8

1 
60

2
28

 3
46

92
3

1 
05

7
5 

48
1

6 
98

4
1 

97
4

1 
39

5
77

8
1 

33
9

3 
61

7
9 

03
9

1 
17

2
4 

53
2

10
7 

45
1

49
 8

94
1 

61
5

6 
09

5
4 

01
6

77
9

2 
38

1
1 

43
7

20
3

13
5

1 
22

8
56

5
10

3
41

7
47

8
1 

56
4

39
 5

21 57
3 

41
5

2 
24

1
5 

64
9

8 
30

1
1 

04
7

3 
42

0
66

8
54

0
16

4
1 

18
7

19
 0

20
51

8 27

0

5

10

15

20

25

30

%

Percentage of computer science documents in top 10% cited documents

Percentage of all publications (except for computer science) in top 10% cited documents

Total number of computer science documents

https://doi.org/10.1787/9789264311992-en
https://doi.org/10.1787/888934075697
https://doi.org/10.1787/888934075697


54  2. HOW ARE SCIENCE, TECHNOLOGY AND INNOVATION GOING DIGITAL? THE STATISTICAL EVIDENCE 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

narrow fields, its performance increasingly resembles that of humans. Such advances have allowed computers 

to distinguish between objects in images and videos, and interpret text through natural language processing, 

with growing levels of accuracy (OECD, 2017). The 2017 edition of the OECD Science, Technology and 

Industry Scoreboard provided initial evidence on the rapid growth in scientific documents that refer to 

machine learning – the general method underpinning current advances in data-driven AI – between 2003 

and 2016. Interest in AI has triggered several measurement efforts, as documented in Box 2.1. 

Box 2.1. Measurement of AI in research, technology and innovation  

The OECD supports governments through policy analysis, dialogue and engagement, and identification of 

best practices. Significant effort is put into mapping the economic and social impacts of AI technologies 

and applications and their policy implications. This includes improving the measurement of AI and its 

impacts, as well as shedding light on important policy issues. These issues include labour market 

developments and skills for the digital age, privacy, accountability of AI-powered decisions, and the 

security and safety questions that AI generates (OECD, n.d. a).  

Recent OECD analysis has looked at areas as diverse as scientific publications, conference proceedings, 

patenting, open-source software and venture capital investment. One such study has used data from 

Crunchbase, a commercial database on companies around the world, and found that AI start-ups had 

attracted around 12% of worldwide private equity investments in the first half of 2018, up 3% in 2011. 

US-based start-ups account for two-thirds of total investment since 2011 (Breschi, Lassébie and Menon, 

2018; OECD, 2018c). China has seen a dramatic upsurge in AI start-up investment since 2016. From 

just 3% in 2015, Chinese companies attracted 36% of global AI private equity investment in 2017. In 

addition to AI measurement work reported elsewhere in this chapter, recent measurement of AI at the 

OECD includes analysis in collaboration with Germany’s Max Planck Institute for Innovation and Competition 

using data on patents with and analysis of open-source software publishing. Since 2014, AI open-source 

software recorded in GitHub grew about three times as much as the rest of open-source software. The 

number of AI IP5 patent families (namely those registered in the five major intellectual property [IP] 

offices) went up from close to 1 000 in 2001 to 2 500 in 2014 (Yamashita et al., forthcoming). 

Several other public and private, national and international organisations have an active interest in 

measuring AI. Recent examples include reports by Elsevier (2018) on scientific publications and WIPO 

(2019), principally on patenting. The Electronic Frontier Foundation, which campaigns to protect civil 

liberties from digital threats, has started to measure and contextualise progress in AI. This not-for-profit 

organisation is working to assemble an open-source, online repository of data points on AI progress 

and performance (Simonite, 2017), benchmarking AI-enabled machine performance compared to humans. 

The AI Index, backed by the One Hundred Year Study on Artificial Intelligence, was established at 

Stanford in 2015 to examine the effects of AI on society. This initiative prioritises measurement and 

uses multiple sources (Shoham et al., 2018), including company reports and executive management 

surveys (such as Bughin et al., 2017 and McKinsey, 2018). 

Text mining of keywords in scientific publications shows that Computer science is the most prevalent domain 

in AI-related science. It accounts for slightly more than one-third of all AI-related documents published 

between 1996 and 2016 (Figure 2.2). More than a quarter of all AI-related scientific publications and 

conference proceedings have appeared in Engineering journals and close to 10% in Mathematics journals. 

About 25% of the science involving AI (either drawing on AI or contributing to its general advancement) is 

found in a wide array of other scientific disciplines. These include Physics and astronomy, Medicine and 

Materials science, among others, demonstrating the growing pervasiveness of AI-related scientific research. 
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Figure 2.2. Scientific fields contributing to or making use of AI, 2006-16  

Journal classification of AI-related scientific documents, as percentage of all AI-related documents  

 

Notes: AI = artificial intelligence. See Box 2.2 for further information.  

Source: OECD (2019a), Measuring the Digital Transformation: A Roadmap for the Future, https://doi.org/10.1787/9789264311992-en.  

StatLink 2 https://doi.org/10.1787/888934075716 

Box 2.2. How is AI-relatedness measured in scientific publications and how can it  
be interpreted?  

NNNAI-related documents are identified on the basis of Scopus-indexed articles, reviews and conference 

proceedings using a list of keywords to search on the abstracts, titles and author-provided keywords of 

scientific documents. The AI keywords are selected on the basis of high co-occurrence with terms 

frequently used in journals classified as AI-focused (a subcategory of Computer Sciences) by Elsevier, 

the publisher and provider of bibliographic information and related services.  

In the OECD analysis, which focuses on documents published between 1996 and 2016, only those 

documents with two or more selected keywords were classed as AI documents in order to reduce the 

risk of including non AI-related documents. Relatedness in this context encompasses instances in which 

the document presents findings related to existing or new AI procedures. It also includes instances in 

which the document reports findings based on the application of AI procedures.  

The ability to distinguish systematically between enabling and outcome dimensions of AI in the corpus 

of document titles, abstracts and keywords relies on the consistent recording both of research methods 

used and findings. As found in the AI literature, automated classification procedures can be substantially 

enhanced through richer data sources. This implies that analysis could be improved through access to 

the entire body of documents subject to analysis. 
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Figure 2.3. Trends in scientific publishing related to AI, 2006-16 

Index of publication counts 

 

Notes: AI = artificial intelligence. See Box 2.2 for further information.  

Source: OECD (2019a), Measuring the Digital Transformation: A Roadmap for the Future, https://doi.org/10.1787/9789264311992-en.  

StatLink 2 https://doi.org/10.1787/888934075735 

Figure 2.4. Top-cited scientific publications related to AI, 2016 and 2006 

Economies with the largest number of AI-related documents among the 10% most cited publications  

 

Notes: AI = artificial intelligence. Economies’ shares in global AI top-cited publications are based on fractional counts. See Box 2.2 for further information. 

Source: OECD (2019a), Measuring the Digital Transformation: A Roadmap for the Future, https://doi.org/10.1787/9789264311992-en.  

StatLink 2 https://doi.org/10.1787/888934075754 

Scientific publishing related to AI (Box 2.2) has experienced a remarkable expansion over the past decade. 

From 2006 to 2016, the annual volume of AI-related publications grew by 150%, compared to 50% for the 

overall body of indexed scientific publications (Figure 2.3). China is now the largest producer of AI-related 

science, in terms of publications, and is fast improving the quality of its scientific production in this area. 
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Back in 2006, China was already the largest producer of AI-related scientific publications, and grew its 

global share to 27% by 2016. In turn, the global publication shares accounted for by the EU28 and the 

United States declined over the same period, to 19% and 12% respectively. Also of note has been the 

rapid growth of AI-related publishing in India, which in 2016 contributed 11% of the world total. In other 

areas, however, different AI-related scientific publications have different levels of what is termed “citation 

impact”. Since it can be misleading to count all publications equally, further analysis has been carried out by 

focusing on AI-related publications attaining the highest citation rates (the top 10% most cited documents 

globally) within their respective journal disciplinary domains.  

As shown in Figure 2.4, the EU28 and the United States are still responsible for the largest shares of highly 

cited AI-related publications (i.e. those featuring among the world’s top 10% most cited publications). 

However, from 2006 to 2016 their shares declined from 29% to 25% for the EU28, and from 31% to 21% 

for the United States. China, India, Iran and Malaysia all more than doubled their share of the world’s top-

cited AI publications over the past decade. 

Public funding of scientific research on AI  

Given the transformative potential of AI, it is worth examining the scale and nature of government and 

business investment. There has been a plethora of policy announcements across countries that are difficult 

to compare. A 2016 White House report indicated that the United States invested USD 1.1 billion in “AI 

research and development [R&D]” in 2015, rising to USD 1.2 billion in 2016 (NSTC, 2016). The European 

Commission estimates it has dedicated close to 13% of its R&D budget to information and communication 

technology (ICT) since 2014 (EC, 2018). The United Kingdom’s Engineering and Physical Sciences Research 

Council has allocated more than GBP 400 million (USD 527 million) for research related to data science 

and AI through different mechanisms (BEIS and DCMS, 2018). In December 2017, Korea’s Ministry of 

Science and ICT announced plans to dedicate in 2018 the equivalent of USD 1.5 billion to AI and related 

areas in support for the “fourth industrial revolution” (EDaily, 2017). Japan’s Prime Minister Abe established 

a Strategic Council for AI Technologies in 2016 to ensure a co-ordinated approach across ministries and 

agencies for AI research, including new AI labs and complementary R&D centres.  

Because AI does not fit neatly into pre-established taxonomies of R&D funding, detailed information sources 

at the micro level are needed to produce reliable and relevant statistical information. Available data systems 

and statistics lack systematic granular information about what publicly funded researchers work on, as 

opposed to what they publish. This makes them ill equipped to address subject-specific questions. Data 

on government-funded projects (often allocated on a competitive basis) provide a useful but partial view of 

the funding landscape that is most accurate when project-based funding dominates over other resource 

allocation mechanisms for scientific research funding. No international data infrastructure brings together 

research funding agencies’ databases on the basis of an explicit agreement that renders them comparable. 

A number of commercial providers grant related information services based on data collected from publicly 

available sources or bilateral data-sharing agreements. The OECD is seeking to addresses this information 

gap by assessing the feasibility of a shared data resource for analysis through the Fundstat pilot project. 

The OECD has also begun new work to map research funding trends using case studies for demonstration 

purposes and focusing on AI given its high policy relevance. 

To date, the case studies have focused on two major US agencies, the National Institutes of Health (NIH), 

one of the world’s main funders of biomedical research, and the National Science Foundation (NSF), which 

covers several areas including civilian computer science research.1 The analysis uses funding data from 

2001 to 2017 from the NIH RePORTER database (over 1.2 million granted applications) and the NSF 

Award Search System 2018 (over 200 000 granted applications). Over less than two decades, the share 

and volume of AI-related funding has grown significantly for both agencies. AI-related funding in 2017 

(Figure 2.5) represented close to USD 820 million for NIH (i.e. 3.6% of total NIH health R&D funding) and 

USD 388 million for NSF (7.3% of NSF R&D funding).  
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Figure 2.5. Estimated NIH and NSF funding for AI-related R&D, 2001-17 

 
Notes: AI = artificial intelligence; NIH = National Institutes of Health; NSF = National Science Foundation. This is an experimental indicator.  

Source: OECD calculations based on NIH RePORTER (database) and NSF Award Search (database) (accessed 1 December 2018).  

StatLink 2 https://doi.org/10.1787/888934075773 

Figure 2.6. Estimated share of AI-related R&D funding within NIH institutes 

“AI intensity” for selected institutes with the largest estimated amounts of AI funding 

 
Notes: AI = artificial intelligence; R&D = research and development; NIH = National Institutes of Health. This is an experimental indicator. For 

clarity of presentation, and with the exception of the National Library of Medicine, responsible NIH institutes’ names are presented by referring 

solely to their missions/subjects. 

Source: OECD calculations based on NIH RePORTER (database) (accessed 1 December 2018).  

StatLink 2 https://doi.org/10.1787/888934075792 
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Analysis of NIH-AI funding data shows which institutes appear to make more intensive use of AI, as implied 

in the awards granted (Figure 2.6). The National Library of Medicine (NLM) (secondary axis) accounts for the 

largest share of AI-related research within NIH (about one-third of the total). It also has the highest internal 

AI intensity at close to 80%, followed by the National Human Genome Research Institute at 5%. In total 

funding terms, NLM is followed by the National Cancer Institute, which has an AI intensity of less than 1%.  

Figure 2.7 shows the incidence of AI-related R&D within the NSF directorates with responsibility for managing 

the funding for different disciplinary domains. AI intensity in 2018 is more than 35% in the case of Computer 

and information sciences (displayed on the secondary axis), up from less than 10% in 2001. This is followed 

by Engineering (general) at 11%, up from nearly 2% in 2012. 

The use of funding data through text analysis is a promising avenue for understanding developments in AI 

research. Funding data help develop a timelier and more finely grained picture that connects funding agencies, 

their missions and traditional disciplinary areas. This can be an important complement to measurement on 

AI in related domains. The challenge is to work towards securing comprehensive data sources with high-

quality text descriptions about the nature of R&D projects across several countries. More than a big data 

challenge, this is a co-ordination challenge that policy makers can help address, particularly in light of  

the OECD Recommendation of the Council on Artificial Intelligence (OECD, 2019b). The OECD council 

recommendation does explicitly state that governments  

“should consider long-term public investment, and encourage private investment, in research and development, 
including interdisciplinary efforts, to spur innovation in trustworthy AI […]”.  

Monitoring this recommendation requires concerted action.   

Figure 2.7. Estimated share of AI-related R&D funding within NSF disciplines  

“AI intensity” for selected disciplinary directorates with the largest amounts of AI funding 

 

Notes: AI = artificial intelligence; R&D = research and development; NSF = National Science Foundation. This is an experimental indicator.  

Source: OECD calculations based on NSF Award Search (database) (accessed 1 December 2018). 

StatLink 2 https://doi.org/10.1787/888934075811 
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The science system and its contribution to the development of digital skills 

Any overview of how science and innovation are digitalising must examine how the system helps develop 

skills and competences critical to the digitalisation process within science itself and across society and 

ultimately utilises them. Figure 2.8 presents the distribution of new tertiary graduates in the natural sciences, 

engineering and ICT fields for 2016. It shows that Estonia, Finland, India and Ireland have the largest 

shares of graduates in designated ICT fields.  

Figure 2.8. Tertiary graduates in natural sciences, engineering and ICT fields, 2016  

As a percentage of all tertiary graduates  

 

Notes: ICT = information and communication technology. Data on ICT graduates for Japan are included in other fields. The Netherlands excludes 

doctoral graduates. Data for China not included because of reporting differences. Natural sciences and engineering account for about 25% of 

higher education institution graduates (60% for new doctorates). http://en.moe.gov.cn/Resources/Statistics/edu_stat2017/national/index_2.html. 

Source: OECD (2018a), Education at a Glance: OECD Indicators, https://doi.org/10.1787/eag-2018-en. 

StatLink 2 https://doi.org/10.1787/888934075830 

Data from the OECD’s publication Education at a Glance show differences in numbers of graduates in ICT 

subjects at different levels of attainment (Table 2.1). For example, European countries graduate many doctoral 

students relative to those with lower levels of attainment. Conversely, in Korea, the United States and India 

relatively few individuals graduate at doctorate level given the numbers of graduates at the bachelor’s 

level. This may be due to differences in the opportunity cost of staying on for postgraduate study.  

Higher education institutions (HEIs) can also prepare individuals to make use of advanced ICT skills in 

domains other than the computer sciences. Initiatives like the Open Syllabus Project can provide a basis 

for analysing the content of instruction in HEIs across different subjects. They can also provide insight into 
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show that the distribution of skills taught in the classroom is three to four times closer (in terms of content 
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to specific software and computational tools (often referred to as data science related [Box 2.3]) are found 

in the three types of documents. However, they tend to be highly specialised (not present in many courses, 

for example). Conversely, general research, management, problem-solving and management skills are both 

central to courses and job ads. Skills related to computational tools appear to show mutual predictability 

across scientific publications and job requirements, as if course offerings both anticipate and react to employers’ 

needs. This highlights a form of close interdependency between science and industry in this particular 

area, one not captured by standard indicators of science-industry knowledge flows. 

Table 2.1. Graduates in ICT at different levels of attainment, selected countries, 2016  

 Bachelor’s level Master’s level Doctorate level 

France 9 370 9 827 630 

Germany 15 931 8 380 1 021 

Korea 7 837 1 018 154 

United Kingdom 15 275 6 733 1 136 

United States 69 436 41 002 1 951 

India 338 062 211 693 507 

Russian Federation 31 087 29 251 1 860 

Notes: ICT = information and communication technology. Data on China are not available because of lack of comparable data under new ISCED-

Fields classification.  

Source: OECD (2018a), Education at a Glance: OECD Indicators, https://doi.org/10.1787/eag-2018-en.  

Box 2.3. Data science and data scientists  

The US NIH define “data science” as “the interdisciplinary field of inquiry in which quantitative and analytical 

approaches, processes, and systems are developed and used to extract knowledge and insights from 

increasingly large and/or complex sets of data” (NIH, 2018). Google’s chief economist, Hal Varian, foresaw 

this trend when he argued in 2009 that the “sexy job in the next 10 years” would be “statistician” (Varian, 

2019). This prediction has in a sense come true for those who are known as data scientists (OECD, 2018b). 

The term “data scientist” is now widely used in business and management contexts not conventionally 

associated with scientific research. It refers to individuals with formal training at the junction of computer 

and decision sciences, modelling, statistics and applied mathematics. The particular combination of 

knowledge and skills, however, goes beyond those used in traditional business analytics posts. It allows 

data scientists to harness and interpret vast and growing amounts of data and information. Ultimately, 

this connects them to organisational decision making. 

Are universities training a sufficient number of individuals who can do advanced research on digital tools and 

systems? Evidence from the 2017 OECD collection of data on the Careers of Doctorate Holders (CDH-light) 

shows that ICT doctorates account for a relatively small share of the doctorate population, typically with 

lower shares than at master’s or lower levels of tertiary attainment (Figure 2.9). Available figures indicate that 

at both doctorate and master’s levels, the share of ICT graduates is much higher among men than women.  

While the history of computer science has seen periods when, like in the 1960s, women made up the 

majority of computer programmers, doctoral education among women was rare. It was only in 1965 that 

the first doctorate in computer science was awarded to a woman – Mary Keller – in the United States. In 

2005, the proportion of women among entrants to doctoral programmes in the United States was just below 

20%, a value close to the OECD average (OECD, 2018a). In most countries, the share of female entrants 

to doctoral programmes is below 30%, which is less than for engineering programmes. These figures are 

similar to entry shares at bachelor’s or equivalent levels.  

https://doi.org/10.1787/eag-2018-en
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Figure 2.9. Individuals holding master's (ISCED7) and doctorate (ISCED8) level degrees in ICT, 2016 

As a percentage of graduates in all fields, by sex and attainment level 

 

Note: ICT = information and communication technology. 

Source: OECD calculations based on OECD (n.d. b), Careers of Doctorate Holders database, http://oe.cd/cdh.  

StatLink 2 https://doi.org/10.1787/888934075849 

Figure 2.10. The distribution of ICT doctorates across industries  

As a percentage of all doctorates with a degree in ICT or any field  

 

Notes: ICT = information and communication technology. Estimates based on data for Belgium, Brazil, Canada, Finland, Germany, the Netherlands, 

Switzerland and the United Kingdom. 

Source: OECD calculations based on OECD (n.d. b), Careers of Doctorate Holders database, http://oe.cd/cdh.  

StatLink 2 https://doi.org/10.1787/888934075868 
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policies that tighten up residential visa or nationality requirements. There are also significant reallocations 

within digitally oriented fields. In the United States, the number of doctoral recipients from domestic universities 

in Computer science increased by 20%, while in Electrical, electronics, and communications engineering 

decreased by 3% over the decade from 2007 to 2017. This compares to an overall growth for all engineering 

fields of 27% and 13% for all fields of science (National Science Foundation, 2018).  

These individuals with high research competences in ICT-related subjects are found principally in the ICT 

industry, followed by professional services (which includes R&D specialist firms) and higher education 

(Figure 2.10). Holders of ICT doctorates are also more oriented to work in the business sector than the 

average doctoral graduate. CDH data also show that doctorate holders in the field of ICT are significantly 

more mobile across jobs than their counterparts in other fields. For example, in the United States, 30% of 

ICT doctorates have changed jobs in the last year, compared to a 15% average across fields. 

Scientific research enabled by digital technology  

As discussed in Chapters 1 and 3, digitalisation is changing the way research is conducted and disseminated. 

To examine the emerging patterns of digitalisation in science, the International Survey of Scientific Authors 

(ISSA) (Box 2.4) asked a global sample of scientists a number of questions. These included such questions 

as whether digital tools make scientists more productive; to what extent they rely on big data analytics, or 

share data and source codes developed through their research; and to what degree they rely on a digital 

identity and presence to communicate their research. Preliminary survey results reveal contrasting patterns 

of digitalisation across fields.  

The use of advanced digital tools, including big data, is a defining feature of the computer sciences, followed 

by multidisciplinary research, mathematics, earth and materials sciences and engineering (Figure 2.12). The 

life sciences (with the exception of pharmaceuticals) and the physical sciences (other than engineering) 

report the largest relative efforts to make data and/or code usable by others. There are smaller systematic 

differences in the reported use of productivity tools, which happen to have much higher general adoption 

rates. Scholars in the engineering domains report using productivity tools relatively less frequently. Interestingly, 

the fields making less use of advanced digital and data/code dissemination tools – namely those in the 

social sciences, arts and humanities – are more likely to engage in activities that enhance their digital 

presence and external communication (e.g. use of social media).  

Box 2.4. The OECD International Survey of Scientific Authors  

During the last quarter of 2018, the OECD contacted a large, randomly selected group of authors of 

scholarly documents. The group was asked to respond to an online survey aimed at identifying patterns, 

drivers and effects of digitalisation in scientific research. This OECD ISSA obtained rich information from 

nearly 12 000 scholars worldwide about their use of a broad range of digital tools and related practices, 

in addition to other key demographic and career information. 

Answers to 36 questions were analysed to identify four major “latent” factors. These represent how likely 

scientists are to i) make use of productivity tools to carry out regular tasks such as retrieving information 

and collaborating with colleagues; ii) make data and code outputs available to others; iii) use or develop 

unconventional data and computational methods; and iv) maintain a digital identity expanding their 

communication with peers and the public in general. Analysis of a variable closely correlated with the 

third factor shows the digitalisation of science is not limited to scientific fields that specialise in computer 

science or information technology engineering. More detailed results and analysis from this study will 

be available on the project website http://oe.cd/issa. 

http://oe.cd/issa
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Figure 2.11. Use and development of big data across scientific domains, 2018 

 

Notes: This is an experimental indicator. “Other life sciences” include: Biochemistry, Genetics, Molecular biology, Immunology and microbiology. 

“Big data” refers to authors who answer that their teams use or develop “data with size, complexity and heterogeneity features that can only 

be handled with unconventional tools and approaches, e.g. Hadoop”. Estimates are weighted and take into account the sample design as 

well as non-response.   

Source: OECD calculations based on OECD (n.d. c), OECD International Survey of Scientific Authors 2018, http://oe.cd/issa. 

StatLink 2 https://doi.org/10.1787/888934075887 

Differences in digitalisation patterns are also marked by personal and sectoral employment characteristics. 

Younger scientists are more likely to engage in all four dimensions of digital behaviour. This confirms 

digitalisation patterns found in ICT use surveys addressed to individuals in the general population. Female 

scientists are less likely than their male counterparts to use and develop advanced digital tools. However, 

they are more likely to engage in enhancing their digital presence, identity and communication, even after 

accounting for differences in field and country.  

Scientific authors that work in the business sector are also more likely than those in other sectors to make use 

of advanced digital tools linked to big data and less likely to engage in data/code dissemination activities 

and online presence and communication. By contrast, authors in the higher education sector are more 

prone to use digital productivity tools (indeed most of those presented in the survey are related to academic 

tasks), as well as online presence and communication.  

Research paradigms and digitalisation  

Since digital tools can transform how scientific research is conducted, ISSA survey respondents were allowed to 

describe their scientific research work with respect to the use of theory, simulations, empirical non-experimental 

and experimental activity, and combinations among these. Scientific research practices correlate with digital 

practices in complex ways. Researchers engaged in computational and modelling work (37% of the sample) are 

the most likely to use advanced digital tools. However, they are also less likely to engage in online presence and 

communication activities. Together with researchers involved in experimental work (49%), they are also the 

most likely to engage in data and code dissemination practices, for example through platforms such as GitHub.  
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Figure 2.12. Patterns of digitalisation in science across fields, 2018 

Average standardised factor scores for four different facets of digitalisation, by field 

 

Notes: This is an experimental indicator. This figure presents average scores for four latent factors representing different facets of digitalisation 

for each scientific field. The factor analysis is based on responses by scientists to 36 questions relating to digital or digitally enabled practices. 

These are combined in four synthetic indicators that have been normalised to have overall zero average and identical variance.  

How to read this figure: computer science’s highest score for the factor representing use of advanced digital tools (grey line) represents high 

relative intensity on this facet. Conversely, a low relative intensity is seen on the digital facet representing online presence and communication 

(dotted line) for scientists in this area.  

Source: OECD calculations based on OECD (n.d. c), OECD International Survey of Scientific Authors 2018, http://oe.cd/issa.   

StatLink 2 https://doi.org/10.1787/888934075906 

Those reporting work on gathering information (37%) are surprisingly not among those most likely to 

disseminate data and code. This suggests considerable scope for digitalisation of their data diffusion activity. 

Among this group, the use of digital productivity tools is nonetheless high. Those involved in theoretical work 

(46%) tend to make limited use of most digital practices. The incidence of digital practices among those 

undertaking empirical, non-experimental work (45%) is most common in the social sciences. It is relatively 

constrained in terms of data/code dissemination (creating a challenge for replicability) and advanced digital tools.  

Open science and digitalisation 

One important avenue of enquiry relates to the scope for digitalisation to address some perceived structural 

problems in how research is collectively organised. As Chapter 3 discusses, digitalisation offers a variety 

of opportunities for open science practices. For example, digitalisation can help reduce transaction costs; 

promote data reuse; increase rigour and reproducibility; and decrease redundant research. It can also 

better involve patients, consumers and others; facilitate researcher transparency in sharing information on 

processes and results; and improve connections between a larger variety of actors to produce more 

innovative approaches and solutions (Gold, 2016). Open Science encompasses multiple dimensions, 

including unhindered access to scientific articles, access to data from public research, and collaborative 

research enabled by ICT tools and complementary incentives. Broadening access to scientific publications, 
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data and code is at the heart of open science so that potential benefits are spread as widely as possible 

(OECD, 2015b). Interest is growing in monitoring the use of such practices (Gold et al., 2018). 

Open access to documents 

Access to scientific research articles plays an important role in the diffusion of scientific knowledge. Digital 

technology facilitates the sharing of scientific knowledge to promote its use for further research and innovation. 

Open access (OA) indicators reported in OECD (2017) reveal that 60% to 80% of content published in 

2016 was, one year later, only available to readers via subscription or payment of a fee (Figure 2.13). 

Journal-based OA (usually termed “gold” OA) is particularly noticeable in Brazil, as well as in many other 

Latin American economies. Repository-based OA (also known as “green” OA) is especially important for 

authors based in the United Kingdom. About 5% of authors appear to be paying a fee to make their papers 

publicly available in traditional subscription journals (also known as “gold hybrid” OA).2 

Figure 2.13. Open access of scientific documents, 2017  

As a percentage of a random sample of 100 000 documents published in 2016, by country of affiliation  

 

Source: OECD (2017), “Open access of scientific documents, 2017: As a percentage of a random sample of 100 000 documents published in 

2016”, https://doi.org/10.1787/sti_scoreboard-2017-graph66-en.  

StatLink 2 https://doi.org/10.1787/888934075925 

Assessing the extent to which OA publications receive more citations than non-OA publications helps policy 

makers evaluate the social costs and benefits of alternative mechanisms for funding scientific publication. 

This has led to efforts to measure the “open access citation advantage”. Bibliometric analysis confirms 

previous findings of a mixed picture (OECD, 2015b; Boselli and Galindo-Rueda, 2016), as not all forms of 

OA appear to confer a citation advantage. OA is in general associated with higher citation rates among 

documents covered by major indices. However, this does not apply to documents published in OA journals, 
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which on average tend to be more recent and present lower historical citation rates. Repository-based 

(green) OA systematically confers a citation advantage. In most cases, higher citation rates are generally 

found for “gold hybrid” documents. These are articles published in subscription journals whose authors pay 

publishers a fee to enable free online access on the part of potential readers. The ISSA1 study showed 

that researchers had a positive willingness to pay to disseminate their result conditional on their paper being 

accepted. The results from the ISSA1 and ISSA2 studies confirm that authors of documents in gold OA 

journals tend to report significantly lower earnings, point to strong and self-reinforcing prestige effects that 

are dissociated from dissemination objectives in the digital era (Fyfe et al., 2017). Evidence points to OA 

increasingly becoming the norm. Moreover, incumbent high prestige journals look likely to take advantage 

of their current citation advantage. This leads to the fundamental question: what type of OA model will 

prevail in the longer run for signalling quality?  

Open access to data and code  

Measuring and understanding access to data and code are also important for mapping open science 

practices. The ISSA2 study has gone beyond probing the access status of publications. It also considers 

the status of other research outputs, in particular the code and data reported by authors to have been 

developed as part of the published research. The study shows that less than half of respondents in all 

science fields deliver data or code to a journal or publisher as support to their publication. The use of 

repositories for data archiving and dissemination seems to be most common among respondents in the 

life sciences. Informal data or code sharing among peers seems to be the main way researchers in all 

fields make data available to others. 

The publication of research data or code does not imply that other researchers can easily use and reuse 

them. Use might be impaired if the access costs are prohibitive or access implies other challenges. For 

this reason, the ISSA2 survey asks about charging policy. It also asks about attributes that are part of the 

open science principles of findability, accessibility, interoperability and reusability.  

The practice of adopting standard mechanisms for requesting and securing data access seems to be 

uncommon in all disciplines. Less than 30% of respondents indicated using such mechanisms when 

sharing their data or codes. Likewise, a low percentage of respondents (about 10%) applied a data usage 

licence to their data. Reusability of data seems to be ensured mainly through the development and 

provision of detailed and comprehensive metadata, especially in the physical sciences and engineering. 

Compliance with standards that facilitate data combination with other sources is more common in health 

and life sciences, whereas it seems to be less diffused in the physical sciences and engineering.  

In all fields, authors tend to report several barriers to access of scientific outputs. These include formal 

sharing requirements set by publishers, funders or the respondent’s organisation; IP protection systems; and 

resources necessary for dissemination. Career objects and peer expectations were pre-eminently reported 

as drivers of enhanced access. Privacy and ethical considerations tend to limit access to scientific outputs 

in health sciences. Dissemination costs in terms of time and money are deemed strong barriers. However, 

respondents do not consider capabilities for managing disclosure and sharing as important either way.  

Digitalisation and the broader impacts of science  

Another key policy question is the extent to which scientists that engage in non-academic activities exhibit 

different patterns of digital competence. Data from the 2018 ISSA suggest that scientists who have applied 

or registered for IP protection; done consultancy work; started new companies or served as executives; 

and engaged in various societal outreach activities, such as supporting the work of museums and charities 

tend to exhibit also higher levels of competence in advanced digital tools (Figure 2.14).  

Those scientists who have started companies or served as executives – about 20% of the sample – had the 

biggest advantage in advanced data competences; the gap is close to one-half of the standard deviation for 
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this latent factor. The gap is also particularly large for persons engaging in IP application or registration (reported 

in about one-fifth of cases), and significant too for those undertaking consultancy work and societal engagement.  

Figure 2.14. Digital activity of scientific authors by engagement in external activities, 2018  

Difference in digital intensity scores between authors active and non-active in external activities  

 

Notes: How to read this chart. Scientists who have founded companies or served as executives have an expected latent competence in advanced 

digital tools that is 0.45 standard deviations larger than those who have not. In contrast, their expected competence in digital productivity tools 

is much closer to that of others, with a difference of less than 0.1 standard deviations. See notes for Figure 2.12. 

Source: OECD calculations based on OECD (n.d. c), OECD International Survey of Scientific Authors 2018, http://oe.cd/issa.   

StatLink 2 https://doi.org/10.1787/888934075944 

All this points to the high demand for these skills in the economy and society. The digital advantage in 

terms of individuals’ online presence and communication is particularly marked for those engaged in societal 

outreach activities (also political work, not reported in the chart) and consultancy work. There is no significant 

difference in this digital factor for those active in IP and those who are not.  

Looking ahead: Scientists’ perspectives on digitalisation and its impacts 

How do scientists themselves view the digital transformation of scientific research and its impacts? Evidence 

from the 2018 ISSA study suggests that scientists are on average positive across several dimensions 

(Figure 2.15). Many respondents feel that digitalisation has positive potential to promote collaboration, 

particularly across borders, and improve the efficiency of science. While remaining positive, scientists 

appear less optimistic regarding the potential impact of digitalisation on the system of incentives and rewards. 

Specifically, they are concerns about being rated on the basis of their digital “footprint”, such as their 

publications and citations, as well as downloads of their work. They also have reservations about whether 

digitalisation can bring scientific communities and scientists together with the public (inclusiveness). Finally, 
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they sometimes question the role of the private sector in providing digital solutions to assist their work. 

Younger authors are generally more positive than their older peers, except with respect to the impacts of 

digitalisation on the incentive system, which may reflect concerns about their future careers.  

Figure 2.15. Scientists’ views on the digitalisation of science and its potential impacts, 2018 

Average sentiment towards “positive” digitalisation scenarios, as percentage deviation from mid-viewpoint  

 

Notes: This is an experimental indicator. Survey respondents were asked to rate opposing scenarios on different dimensions from (1 = fully 

agree with a negative view) to (10 = fully agree with a positive view). For interpretability, weighted average scores on each dimension and the 

general summary view (weighted average across dimensions) are presented as percentage deviations from the midpoint. This means, for example, 

that with respect to the subject of “Science across borders”, respondents are on average 50% oriented towards the positive outcome, relative to 

the neutral perspective. Weighted average scores take into account the sample design and non-response. 

Source: OECD calculations based on OECD (n.d. c), OECD International Survey of Scientific Authors 2018, http://oe.cd/issa.  

StatLink 2 https://doi.org/10.1787/888934075963 

Across countries, the average sentiment towards the impacts of digitalisation (Figure 2.16) seems consistent 

overall with results from broader population surveys on attitudes towards science and technology (OECD, 

2015e). Scientists in emerging and transition economies appear to be more positive on average towards 

the impacts of digitalisation on science. The position of scientists in the most R&D-intensive European 

economies is more reserved, while still positive in the main. These results do not imply that scientists are 

by and large dismissive of the potential pitfalls of digitalisation. A minority, but still a significant number, of 

respondents tended to agree with “negative” statements about the impacts of digitalisation on science. They 

were concerned, for example, about the promotion hypothesis-free research in computationally intensive 

data-driven science. For these respondents, digitalisation could also accentuate divides in research between 

those with advanced digital competences and those without. It could also encourage a celebrity culture in 

science, premature diffusion of findings and individual exposure to pressure groups. Digitalisation could 

also lead to use of readily available but inappropriate indicators for monitoring and incentivising research. 
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Finally, they agreed with the statement that digitalisation could concentrate workflows and data in the hands 

of a few companies providing digital tools. 

Figure 2.16. Scientists’ views on the digitalisation of science, by country, 2018 

Average sentiment towards a “positive” digitalisation scenario, as percentage deviation from the mid-range  

of possible views  

 

Notes: This is an experimental indicator. Cross-country comparisons should be interpreted with caution as the population of corresponding 

scientific authors is not uniformly representative of their scientific community. Economies with less than 75 survey responses have been 

removed. Average scores are weighted and take into account the sample design and non-response. See notes for Figure 2.15. 

Source: OECD calculations based on OECD (n.d. c), OECD International Survey of Scientific Authors 2018, http://oe.cd/issa.  

StatLink 2 https://doi.org/10.1787/888934075982 

Technology and innovation going digital  

Development of digital technologies  

R&D in ICT industries and ICT-driven R&D  

As an activity defined by the pursuit of new knowledge, R&D is important in driving advances in digital 

technologies. Businesses are the main source of R&D. Information industries are particularly strong contributors 

in countries with high business R&D intensity, accounting for just over half of all business R&D in some 

cases (Figure 2.17). Information industries also represent over 40% of business R&D in Estonia, Finland, 

Ireland, Turkey and the United States, confirming the knowledge-intensive nature of these industries. 

Estimates of business R&D by industry fail to gauge perfectly the extent to which R&D contributes to 

digitalisation. This is important in the case of software because many firms invest in it for internal use and 

as a basis for providing other goods and services. By missing out software R&D (Box 2.5) in other sectors, 

the value of R&D in the software and information industries underestimates the total R&D aiming to 

generate new software. For instance, while software publishers in the United States account for 10% of all 

R&D performed and funded by companies, three times as much money was actually dedicated by US firms 

R&D aimed for software products or software embedded in other projects or products. 
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Figure 2.17. Business R&D expenditure, total and in information industries, 2016 

As a percentage of GDP 

 

Notes: R&D = research and development; GDP = gross domestic product. “Information industries” are defined according to ISIC Rev.4 and 

cover ICT manufacturing under “Computer, electronic and optical products” (Division 26), and information services under “Publishing, audiovisual 

and broadcasting activities” (Divisions 58 to 60”), “Telecommunications” (Division 61) and “IT and other information services” (Divisions 62 to 63). 

Source: OECD (2019a), Measuring the Digital Transformation: A Roadmap for the Future, https://doi.org/10.1787/9789264311992-en.   

StatLink 2 https://doi.org/10.1787/888934076001 

Figure 2.18. R&D intensity of ICT and other industries, 2016  

As a percentage of gross value added in each industry, log scale  

 

Note: R&D = research and development; ICT = information and communication technology. 

Source: OECD calculations based on OECD ANBERD, http://oe.cd/anberd, STAN, http://oe.cd/stan and National Accounts, 

https://stats.oecd.org/Index.aspx?DataSetCode=NAAG databases (accessed December 2018).  

StatLink 2 https://doi.org/10.1787/888934076020 
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Box 2.5. Software and R&D: A measurement challenge 

Software development and R&D are closely intertwined (OECD, 2015a; OECD, 2015c; OECD/Eurostat, 

2018). For example, the software industry is among the most R&D-intensive across most countries 

(Figure 2.18). Following revision of international guidelines in 1993, national accounts (NAs) economic 

statistics were comprehensively updated, as purchases of software and the own-account production of 

software were recognised as capital formation (i.e. “real” or “fixed” investment). Subsequent updates in 

NA systems and practices in many countries expanded this treatment to include firms’ own development 

of software originals used for reproduction. 

The latest (2008) update of international guidelines introduced the classification of R&D as fixed 

investment. In so doing, it adopted the OECD definition of R&D and its measurement guidelines as the 

basis for primary data collection. Consequently, national accountants had to deal with the natural overlap 

between the development of own-account software originals and R&D activity. Own-account software 

originals were already included as investment in the NA measures of own-account software. Therefore, 

they were excluded in most cases from the new R&D measures to avoid double-counting in the NA 

aggregates. This treatment introduced a misalignment between the NA measures and the primary source 

data underlying the estimates of investment in R&D, produced by organisations that participate in the 

OECD’s NESTI. This misalignment could increase over time and potentially confuse users if software-

generating R&D accounts for an increasing share of R&D. Some countries, such as the United States, 

are resolving this apparent inconsistency by reclassifying the own-account production of software originals 

that meets the R&D definition as R&D. It is unclear how other countries will resolve this challenge.  

The growing importance of software development as an economic activity also presents a test-case for 

the measurement of R&D. The criteria provided in the 2015 edition of the Frascati Manual (OECD, 2015c) 

are a case in point. They allow organisations reporting and collecting data for statistical and other 

administrative purposes (such as the provision of R&D tax incentives) to discriminate between genuine 

R&D and non-R&D activities. R&D in software includes software development or improvement that expands 

scientific or technological knowledge, as well as the development of new theories and algorithms in 

computer science. In contrast, R&D activity in software excludes software development that fails to meet 

such requirements, e.g. work to support or adapt existing systems, add minor functionality to existing 

application programs, etc. 

Use of digital technology in business and the link between digitalisation and innovation  

Although the way in which innovation responds to and influences digitalisation can be mediated by R&D 

and invention, but it would be wrong to identify them as the same concept. The Oslo Manual definition of 

an innovation (OECD/Eurostat, 2018) refers to a new or improved product or process (or combination of 

both). It must differ significantly from a unit’s previous products and processes and be available to potential 

users or brought into use by the unit. Innovation requires that implementation take place: it must transcend 

the space of ideas and inventions. At a minimum, the innovation has to be new to the organisation. Thus, 

this is a broad concept that encompasses diffusion processes that involve a significant change from the 

viewpoint of who is adopting them. In this regard, various digitalisation processes across the economy are 

effectively innovations for those who implement them. Data from business innovation surveys show the 

information services industry generally exhibits the largest rates of reported innovation (e.g. 75% in the case 

of France). This may partly reflect higher rates of obsolescence, which call for more frequent innovation. 

Digitally based innovations can be found in any sector. They comprise product or process innovations that 

incorporate ICT (the product itself can be a digital good or service). They also comprise innovations that 

rely to a significant degree on the use of ICT for their development or implementation. A wide range of 
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business process innovations entail fundamental changes in the organisation’s ICT function and its 

interaction with other business functions and the products delivered.  

The latest edition of the Oslo Manual aims at ensuring that guidance fully reflects changes induced by 

digitalisation. For example, it recognises data development activities, along with software, as a potential 

innovation activity. Data accumulation by companies can entail significant direct or indirect costs. For example, 

a firm may give away for free, or at a discounted price, goods or services that generate information valuable 

for advertising products. The manual proposes to focus on developing measures of “digital competence”. 

This multifaceted construct seeks to reflect a firm’s ability to deal with digitalisation in a broad sense. Potential 

indicators, still to be harmonised ways in surveys, relate to:  

 levels of digital integration within and across business functions  

 access to an ability to use data analytics to design, develop, commercialise and improve products, 

including the ability to secure data about the (potential) users of the firm’s products and how they 

interact with the products (Rindfleisch et al., 2017)  

 access to networks and use of appropriate solutions and architectures  

 capacity to manage privacy and cybersecurity risks 

 adoption of appropriate business models for digital environments and platforms.  

In addition to these internal capabilities, the manual recommends capturing, among the various external 

factors influencing innovation, information on the extent to which a firm uses digital platforms or is exposed 

to competition from them. Consumer and societal perspectives such as trust are also relevant to digitalisation. 

This measurement agenda requires close co-ordination with surveys on ICT use in firms. The latter are the 

responsibility of the OECD’s Committee on Digital Economy Policy and its Working Party on the Measurement 

and Analysis of the Digital Economy. 

The OECD is highlighting country experiences in collecting data to motivate the collection and analysis of 

information at the junction between ICT adoption and innovation. It is also showcasing the data’s potential 

relevance for international comparative analysis. One example is a recent study of patterns of advanced 

technology and business practices (ATBPs) among Canadian firms. This was conducted within the scope of 

Statistics Canada (STC)’s 2014 Survey of Advanced Technology. Joint OECD-STC analysis (Verger et al., 

forthcoming) has helped map ATBP portfolios via factor analysis. This has revealed seven main categories of 

ATBP specialisation: logistics software technologies; management practices and tools; automated production 

process technologies; geomatics and geospatial technologies; bio-and-environmental technologies; software 

and infrastructure as a service; and additive and micro manufacturing technologies. The data indicate a 

strong complementarity between management practices and production and adoption of logistics technologies.  

As shown in Figure 2.19, Verger et al. (forthcoming) has found the rate of use of ATBPs to be generally 

positively correlated to the size of firms. This is especially so in the area of automated production process 

technologies, where scale appears to be important. However, software and infrastructure as a service 

(i.e. including cloud computing) is a noticeable exception; unlike technologies such as robotics, it is similarly 

diffused in small and medium-sized enterprises (SMEs) and large firms. This latter finding underlines one 

of the distinctive features of the digital economy: the attractiveness of such technologies for SMEs and 

their potential role in enabling scaling up. 

Characterising industries by ATBP use patterns complements the standard classification systems for industries. 

Such systems are mainly informed by the type of goods and services delivered, rather than the processes 

used to produce them. The correlation between R&D intensity and technology is high in manufacturing 

industries and low in services. Most non-manufacturing sectors have low R&D intensity, even though many 

are technology-intensive. These findings confirm the limitations of using R&D measures for building technology 

taxonomies of industries that include services. 
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Figure 2.19. Advanced technology usage in Canada: Large firms vs. SMEs 

Relative odds of using advanced technology for large firms vs. SMEs  

 

Notes: SMEs = small and medium-sized companies. How to read this chart: large companies are nearly 12 times more likely to use robots with 

sensing or vision systems than SMEs.  

Source: Verger et al. (forthcoming), “Exploring patterns of advanced technology and business practice use and its link with innovation: An 

empirical case study based on Statistics Canada’s Survey of Advanced Technologies”.  

StatLink 2 https://doi.org/10.1787/888934076039 

Lastly, the OECD-STC quantitative case study found that innovation is highly correlated with the use of 

certain business practices and advanced technologies (Figure 2.20). Regression results suggest that using 

advanced technologies doubles the odds of reporting innovations. The odds of innovating are trebled for 

users of selected business practices. The results also indicate complementarity between technology and 

management in explaining innovation. A positive relationship is also found between the development of 

technologies and innovation, especially for products, pointing at the advantages of being lead adopters. 
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Figure 2.20. The link between innovation and the adoption of technology and business practices, 
Canada, 2014 

Estimated log odds ratios of reporting an innovation between technology and/or practice users and non-users 

 

Note: Estimates control for technology development activity, country of ultimate ownership control, and business size and industry. 

Source: Verger et al. (forthcoming), “Exploring patterns of advanced technology and business practice use and its link with innovation: An 

empirical case study based on Statistics Canada’s Survey of Advanced Technologies”.  

StatLink 2 https://doi.org/10.1787/888934076058 

This analysis suggests that aspects of the SAT survey can be adopted more widely. With relevant 

adaptations, they could help assess the combined role of innovation, technology and management in business 

performance. A key challenge is to build consensus on which technologies and practices should be the 

focus of innovation surveys. Another challenge is how to implement approaches that compare data across 

countries, industries and longitudinally (given rapid technological change and obsolescence). At present, 

there is strong demand for specific analysis of the role of AI in business innovation strategies and activities.  

Conclusion  

Digitalisation is everywhere in STI, but with varying depth and perspective 

Ministers from OECD countries and partners at the OECD Ministerial Meeting in Daejeon (Korea) in 2015 

recognised that the rapid evolution of digital technologies is revolutionising STI (OECD, 2015d). These 

technologies, it was noted, are changing the way in which scientists work, collaborate and publish. They 

are also increasing reliance on access to scientific data and publications, and opening new avenues for 

public engagement and participation in science and innovation. At the same time, they are facilitating the 

development of research co-operation between businesses and the public sector, and contributing to the 

transformation of innovation.  

At the time, the OECD was asked to monitor this transformation. It was also invited to convene the 

international community working on STI data and indicators to develop new thinking and solutions for 

generating empirical evidence to guide policy. The 2016 OECD Blue Sky Forum (http://oe.cd/blue-sky) identified 

the digitalisation of STI both as a priority object of measurement and as a fundamental enabler of future 

statistical and analytical work (OECD, 2018b). This principle guided the OECD’s work on the digitalisation 

of science and innovation in 2017-18. This chapter summarises the main results of this work. It presents 

selected and new evidence arising from recent work on measuring digitalisation in science, its potential 

drivers and impacts. The indicators presented also raise further questions.  
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The evidence presented has put a focus on the potential synergies and trade-offs faced by those in 

decision-making roles in the science and innovation system: 

 The geography of scientific activity in computer science and AI, measured by publications, has 

rapidly shifted. Formerly emerging economies like China have increased the quantity and quality 

of their publications, as implied by their citation impact.  

 Research on AI is increasingly embedded in government agencies’ funding of R&D across different 

missions and disciplinary areas. The example based on two major US funding agencies should 

soon be extended to other agencies and countries. However, this requires a concerted effort to 

maintain high-quality project information and to make it available for research policy purposes.  

 Research careers in the area of computer science in the OECD area open a broad range of 

opportunities within and outside academia, but fail to attract a significant share of women. Research 

careers in this area are more inclusive of individuals born or raised abroad, pointing to the importance 

of policies that influence the mobility of talent and consider changes in demand for skills. 

 Digital activity in science is highly pervasive, but there is considerable room for different disciplines 

to more fully exploit the potential of digitalisation. This is particularly true in the use of advanced 

tools that can transform the established research paradigms. Furthermore, high digital intensity is 

associated with many of the third mission activities that policy makers wish to encourage, such as 

creation of start-ups and societal engagement. There is some evidence of a generational and gender 

gap in the adoption of the most demanding digital practices.   

 By and large, scientists appear to be optimistic about the possibilities brought to the practice of 

science by digitalisation, especially the youngest. However, many among the latter harbour more 

reservations about implications for their own careers.  

 The adoption of advanced digital technologies appears to be highly correlated with the adoption of 

complementary business practices; this is closely associated with higher reported innovation. There 

is also evidence that firm size is a strong determinant of advanced technology adoption. However, 

among a representative sample of Canadian firms and after accounting for other characteristics, 

smaller firms are almost as likely to use cloud computing technologies as larger firms. It remains 

to be seen if this finding can be replicated in other contexts.  

 This chapter calls for enhanced measures of organisational competences linked to digital technologies 

that influence firms’ ability to innovate in the current landscape in which platforms play a major role. The 

ongoing revision of innovation surveys to adapt to the guidance of the newly published latest edition 

of the Oslo Manual is a significant opportunity for countries to reconsider how best to generate insights 

in this area.  

More targeted measurement is required to address specific policy questions. These include how digitalisation 

can fundamentally expand the range of hypotheses generated and the speed at which competing research 

hypothesis can be tested. This could help address concerns about declining research productivity, public 

trust in science, lack of diversity and community engagement. It could also inform policy making so as to 

avoid a potential misalignment between career incentives and socially beneficial research. 

Questions about the role of digitalisation also provide a much-needed stimulus to measure key dimensions of 

science and innovation once considered too complicated, or even unnecessary, to measure. Understanding 

how science adopts technologies and organisational practices can ultimately help explain how it can 

influence the direction of technical change and innovation more broadly.  

Digitalisation is a “game-changer” for STI measurement and analysis 

Digitalisation represents a major force for change in the generation and use of STI data and statistics. STI 

systems have become remarkably data-rich: information on innovation inputs and outputs that was only 

recorded in highly scattered, paper-based sources is now much easier to retrieve, process and analyse 
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(OECD, 2018b). When researchers and administrators use digital tools, they leave traces that can be used 

to develop new databases and apply to indicators and analysis. The digitalisation of the patent application 

and scientific publication processes has already provided rich and widely used data resources for statistical 

analysis. Digitalisation is rapidly extending to other types of administrative and corporate data, e.g. transactions 

(billing and payroll data); website content and use metadata; and generic and specialised social media, in 

which STI actors interact with their peers and society. Data practitioners have viewed these new “big data” as 

“uncomfortable data”, i.e. datasets that are too large to be handled by conventional tools and techniques. 

But even these uncomfortable data are now more tractable.  

The increasingly fuzzy boundary between qualitative and quantitative data is a striking example of how big 

data is becoming easier to manage. Many information gathering methodologies (e.g. user testing or interviews), 

for example, were traditionally considered as purely qualitative. However, they can now be conducted on a 

large scale and results quantified. For example, text, images, sound and video can all be “read” by machines. 

Natural language-processing tools automate the processing of text data from thousands of survey responses 

or social media posts into quantifiable data. These techniques can help alleviate some of the common 

challenges facing STI statistics, such as survey fatigue and unfit-for-purpose classification systems applied 

differently by human coders. Subsequently, they generate adaptable indicators.  

Effective application of these new methods relies ultimately on fit-for-purpose, high-quality systems. These 

systems need to collect qualitative information consistently and avoid potential manipulation by parties with 

an interest in the use of the data. Administrative database managers become important gatekeepers of 

data quality, but information providers still need adequate incentives. Big data implies risks in exploiting 

datasets with possible defects and biases not recognised by the researchers. It also implies difficulties in 

evaluating big data techniques and analysis, especially using conventional criteria (such as falsifiability). And 

it implies complexities in explaining these techniques – and their value as evidence for policy evaluation – 

to decision makers and the public. In this new environment, work is moving progressively from fixed scales 

of analysis (such as the nation) towards variable categories, and dealing with vast new databases. This 

requires a different way of searching for patterns, trends, correlations and narratives. 

The changing landscape for surveys has provoked much debate about their future. Some question whether 

the shift to big data is the precursor to the demise of surveys. Others, paraphrasing Mark Twain, argue 

that reports of the death of surveys are greatly exaggerated. The manner in which surveys are carried out 

has indeed changed, as online surveys have largely displaced more expensive non-digital methods. Surveys 

can therefore be targeted towards areas where other data sources are less effective (Callegaro and Yang, 

2018; Jarmin, 2019).  

Electronic tools (including do-it-yourself platforms) have “democratised” the process of surveying, making 

it easier than ever before. This has resulted in an explosion of surveys both in general and in the area of 

STI studies. However, these surveys often fail to meet basic statistical quality requirements, including for 

safeguarding privacy and confidentiality. The rapid growth of surveys also represents a growing source of 

fatigue for respondents; it results in lower expected response rates to non-compulsory (and compulsory, 

but difficult-to-enforce) surveys and may undermine trust. STI policy makers should co-ordinate, and apply 

standards to, their sponsored surveys.  

New data sources for STI, such as administrative records, commercial databases and the Internet, have 

considerable transformational power stemming from their multidimensionality, and the possibilities for 

interconnecting the different types of subjects and objects covered. The strengths of these data sources 

are hard to reproduce in surveys. Traditionally, surveys were conceived to identify key actors and the 

presence of pre-defined types of interactions rather than to trace those linkages.  

Digital solutions applied to survey tools that build trust and credibility can help bring out the potential of 

new data sources. Digital technologies are viewed as key components of the move towards “rich data”. 

They are crucial to validating and augmenting the quality of big data sources (Callegaro and Yang, 2018). 

Rather than competing with alternative sources, surveys look set to focus increasingly on the crucial 
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information that cannot be obtained otherwise. Recent experience shows that trust and credibility will be 

the most crucial factors determining the success of survey efforts in the digital era. 

The experience of the OECD ISSA study confirms the importance, when conducting surveys in the digital 

age, of ensuring mutual trust between data collector and respondent. The ISSA survey ultimately explores 

how to develop working knowledge of emerging topics of high policy relevance. This can help provide a 

potential basis for distributed data collection within countries. It can also create a mechanism for ongoing 

dialogue between the OECD and the global science community. 

STI policy makers need to support the creation and adoption of standards to protect the integrity of data 

they wish to use to inform their policies, regardless of the source. Furthermore, risk management will become 

an integral part of science and innovation policy in the digital era. Policy makers will need to consider how 

to make digitally driven systems, including those based on AI, more trustworthy. As a result, measurement 

will need to increasingly map risks and uncertainty, and analyse how these impact digitalisation practices 

and policies. This will be an important component of decisions assessing the merits of different science 

and innovation policy options in the digital era.  

Digital innovation and AI in particular are indeed at the top of the national and international, as reflected in 

the adoption by the OECD Council of a Recommendation on AI (OECD, 2019b). The OECD council 

recommendation does explicitly state that governments “should consider long-term public investment, and 

encourage private investment, in research and development, including interdisciplinary efforts, to spur 

innovation in trustworthy AI […]”. These policy priorities, with their often explicit demand for measurement 

and new evidence, will guide future OECD statistical and analysis work in this area. 
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Notes

1 In the application area of defence, the Defense Advanced Research Projects Agency is responsible for 

much of the research funding related to computer science in the United States. Project-level information is 

not readily available in this case. While AI is not separately identifiable, this agency’s unclassified budget 

estimates for 2019 contain 21 references to AI research. The 2017 funding for R&D, testing and evaluation 

for the “Defense Research Sciences Program” alone includes USD 145 million for Mathematics and Computer 

Sciences and USD 46 million for Cyber Sciences.  

2 The OECD analysis of OA was based on a random sample of 100 000 documents drawn from articles, 

reviews and conference proceedings published in 2016, listed in the Scopus database and having digital 

object identifiers (DOIs). Assessment of the OA status of the documents was conducted in June 2017 using 

the R-language based “wrapper” routine for the oaDOI application program interface. It was produced by 

ImpactStory, an open-source website that works to help researchers explore and share the online impact 

of their research. The API returns information on the ability to secure legal copies of the relevant document 

for free and the different mechanisms available: Gold OA journal; Gold hybrid; Green OA. When the DOI 

cannot be resolved to any source of access information, the result is marked as “No information – status 

not available”. This category is particularly high for China at more than 15%. When the DOI resolves and 

the return indicates there are no legal open versions available, the document is marked as “Closed”. This 

includes documents under embargo. The oaDOI application and related “unpaywall” browser extension 

have since been further refined and developed. They now identify an additional category of publications, 

namely those that are free to read on the publisher’s page, but without a clearly identifiable licence (labelled 

as “bronze”). Most of these documents went unnoticed in previous versions of the oaDOI application and 

were treated as closed. Piwowar et al. (2018) suggest the percentage of publications in this category is 

around 15% for the most recent publications with valid DOIs. This brings the percentage of functionally 

open documents closer in line with evidence in the ISSA2 study, which suggests about 65% of research 

documents published in 2017 can be freely accessed online one year later. This experience points to the 

usefulness for policy research purposes of APIs with metadata about scientific research, but it is also a 

stern reminder of the sensitiveness of results to the methods used. 
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This chapter considers how digital technologies that have arisen out of 

publicly funded scientific research are now rapidly transforming the practice 

of research and enabling open science. This transformation is apparent 

across all of the three main pillars of open science: dissemination of 

scientific information, access to research data and engagement with 

stakeholders from outside of research. Recent developments and analysis 

are presented for each of these areas. This is followed by a discussion of 

what these developments mean for the governance of science as a whole, 

including for international co-ordination and co-operation. The chapter 

builds on earlier work by the OECD’s Working Party on Innovation and 

Technology Policy and the report “Making open science a reality” and 

synthesises findings from recent work by the OECD Global Science Forum. 
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Introduction   

Digital technologies are transforming science. Much discussion about the digital economy focuses on the 

dominant role of a small number of multinational companies. In this context it is easy to overlook the fact 

that public sector science is at the origin of the digital revolution and continues to play a critical role in 

shaping it. The World Wide Web was first developed at the European Laboratory for Particle Physics in 

Switzerland to meet the needs of particle physicists. Foundational work on the Internet was supported by 

the Defence Advanced Research Projects Agency and the National Science Foundation in public laboratories 

in the United States. Academic researchers are playing a key role in developing the next generation of 

digital technologies – from quantum computing to biological storage of data. At the same time, science 

itself is being radically transformed by the digital technologies it has helped create. 

Digitalisation is affecting all stages of the scientific process – from agenda setting and experimentation to 

knowledge sharing and public engagement. In so doing, it is facilitating the transition towards a new paradigm 

of open science. The transformative and sometimes disruptive effects of digital technologies are apparent 

across all fields of science, but manifest differently in different communities. Scientific domains that have 

historically been data intensive and co-operative, such as particle physics or astronomy, face different challenges 

to much of medical research or social sciences that have been less data-centric. In contrast, these latter 

fields have a stronger history of societal engagement, which is also being transformed by digitalisation.  

Open Science, in its broadest sense, is about making the scientific process more open and inclusive for 

all relevant actors. There are three main pillars: open access (OA) to scientific publications and information; 

enhanced access to research data; and broader engagement with stakeholders from within and beyond 

the scientific community. Strengthening these three pillars could increase the efficiency and effectiveness 

of science, and accelerate the translation of scientific findings into innovations and socio-economic benefits. 

Achieving this and realising the full benefits of open science, while minimising the associated risks, will 

require new policies and careful balancing of mandates and incentives. It will also require long-term strategic 

investment in digital infrastructure and skills. 

This chapter considers the three pillars of open science: how digitalisation is changing established practices, 

the opportunities and challenges that this entails and what this means for policy. It then discusses the meaning 

of these developments for the governance of science as a whole, including for international co-ordination 

and co-operation. The chapter builds on earlier work by the OECD’s Working Party on Innovation and 

Technology Policy and the report “Making open science a reality” (OECD, 2015). It synthesises some key 

findings from recent work done by the OECD Global Science Forum. This work includes an overall 

framework for open science (Dai, Shin and Smith, 2018) and specific policy reports relating to new forms of 

data and ethics (OECD, 2016), data repositories (OECD, 2017a, 2017b); agenda setting (OECD, 2017c); 

and access to research infrastructures (OECD, 2017d). These reports are complemented by insights from 

other recent OECD activities, including workshops, surveys and references to other relevant information.  

Accessing scientific information 

The results of scientific research have traditionally been published in specialist scientific journals, following 

review of submitted manuscripts by peers. The costs of managing the review process and journal production 

and distribution, have been recovered by charging readers (or academic libraries). Over time, a large and 

profitable industry has grown up around scientific publishing and many professional scientific societies 

have come to depend on publishing income to offset the costs of other services that they provide for their 

communities. As the scientific community has grown, the number of scientific journals has massively increased, 

together with the overall subscription charges to access these journals. Even within academia, only the 

better-endowed institutions, mainly in developed countries, have been able to keep up with this expansion. 

With the advent of the World Wide Web and online publishing, the marginal costs of disseminating scientific 

information have been reduced almost to zero, opening up new possibilities for more inclusive and broader 
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access to scientific information. New OA publishing models have emerged (gold, green, hybrid etc.) and 

pre-print servers (such as arXiv.org in physics, or bioRxiv.org for biology), mega-journals (such as PLOS 

One), institutional repositories and online scientific information aggregators (such as PubMedCentral or 

LENS.org) are making access to scientific information easier and more inclusive. This transition to new 

science publishing models has raised concerns about the quality and sustainability of the scientific record. 

Ensuring these has been an important aspect of the added-value that commercial publishers – in partnership 

with scientific societies – have provided. This role has been integrated into their traditional business 

models. In the new OA publication era, it is less clear how editorial and peer-review processes will work 

and how the academic record will be maintained and updated. Estimates for the costs of publication vary 

considerably. Better information will be required to move away from a reader-pays market model to a  

high-quality and sustainable upstream, or author pays, model. It is notable in this regard that cOAlition S  

– a consortium of research funders – has identified lack of transparency on OA publication costs and fees 

as an obstacle to promoting OA publishing (Science Europe, n.d.).  

As new actors enter the science publishing arena, there is considerable concern about the growth in predatory 

online journals. These journals charge authors for publication, but carry out little or no review and quality 

control. Their publications are contaminating the scientific record and can undermine public trust in science. 

An online catalogue of predatory journals created by the librarian Jeffrey Beall in 2008 became an important 

reference site for the scientific community. Since the catalogue ceased to be updated in 2017, its absence 

has been lamented and there have been a number of subsequent efforts to revive it (Weebly.com, n.d.). 

Predatory journals must be publicly identified, and researchers discouraged from seeking publication in them.  

The sheer volume of scientific papers is overloading both legitimate journals and researchers who try to 

keep up with them. The growth in scientific papers is in keeping with the expansion of the global scientific 

community. It also partly reflects academic incentive systems and the “publish or perish” dynamic. Scientists 

have reached “peak reading” and too many research papers are of inadequate quality.1 Even the most 

prestigious journals are having problems with quality assurance and the number of retractions is increasing. 

In some research fields, including life sciences and psychology, there is a reproducibility crisis, with many 

peer-reviewed and published findings being impossible to replicate. High-profile cases of scientific misconduct 

have become apparent in publications across all areas of science. Online forums such as Retraction Watch 

are helping the research community to identify questionable publications and the Committee on Publication 

Ethics is providing valuable guidelines to assist editors in dealing with these, but the numbers continue to 

increase (Brainard and You, 25 October 2018).   

While digital tools cannot address the underlying causes of information overload and lack of scientific 

rigour, they can help manage these issues. Information and communication technology (ICT) can assist in 

organising, sharing and analysing large volumes of scientific information. Emerging tools and platforms enable 

researchers to rapidly identify and access papers that correspond to their interests (e.g. IRIS.AI., n.d.). Articles 

can be automatically “recommended” to scientists based on previous online search histories. Anti-plagiarism 

software, combined with data linkage systems such as Crossref, is helping editors and publishers with quality 

control. These tools, however, depend on the broad adoption of standards and unique digital identifiers, 

which can be supported at the policy level. For example, several research funders have joined publishers 

in mandating the use of Open Researcher and Contributor IDs (ORCIDs) for individual researchers. 

Digitalisation is creating new possibilities for peer review, which remains at the core of the scientific 

publishing process. In some fields, including physics and astronomy, there is a tradition of making results 

available on line for open review and comment prior to formal publication. Pre-print archives and open peer 

review are now being tested in other fields, including life sciences (Cold Spring Harbor Laboratory, 2018). 

Looking to the future, this could be imagined as one part of a tiered process for publication, with more 

scientific information being shared earlier and commented on by the community and only a fraction of this 

eventually being formally published in journals. Some fields are also testing post-publication peer review, 

which can potentially help ensure the quality and rigour of the scientific record. Sites such as Pubpeer 

(Pubpeer Foundation, n.d.) are playing an important role in enabling the community to report and discuss 
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concerns about published results. Technologies such as blockchain can potentially help ensure the fidelity of 

peer review, while accelerating the process and rewarding reviewers (Blockchain for Peer Review, 2019). 

As indicated previously, the predominant model for communication of scientific information to date has 

been via the release of peer-reviewed publications at the end of the research process. However, much 

useful information that is generated during research, including negative results that may be important with 

regards to reproducibility, are never shared. While at one level scientists are over-loaded with information, 

at another level the information that can be readily accessed is often inadequate to critically evaluate, 

replicate and build on what is published. Again, digital technologies can help address this challenge. Online 

open lab notebooks, can provide access to the primary experimental data and information linked to 

publications and also help to ensure appropriate accreditation. The landmark publication of the detection 

of gravitational waves that led to a Nobel prize in Physics in 2017, for example, was accompanied by OA 

to the experimental records in a Jupyter notebook. The scientific article of the future may be more than just 

a narrative with summary results. It may also include direct links to all supporting data and a record of the 

process by which that data was generated and analysed (Schapira, 2018).  

The publication of scientific articles in journals is intimately coupled to the evaluation and rewards systems 

for science. This means that changes to publication practices can directly affect scientific careers. This is 

critically important in the current transition period, when many science funders are mandating OA publication 

(Science Europe, n.d.) but promotion and tenure, and, in some cases, institutional funding, continue to be 

largely determined by publication in high-impact, pay-for-access, journals. Mandates need to be matched by 

incentives and changes to current evaluation systems if the transition to OA publication is to be accelerated. 

A stronger focus on article-based metrics rather than journal impact factors is one way to assist this transition. 

Digitalisation also provides opportunities to communicate scientific results and information in different ways 

that can complement or even replace traditional scientific articles in journals. Not all scientific disciplines 

are equally dependent on scientific articles as their main means of communicating results. In some areas 

of social sciences books are the main output of academic work and in computing sciences, conference 

proceedings are the most important mechanism for sharing results. Again, digitalisation and online tools 

can increase access to these outputs.  

The use of social media, such as Facebook and Twitter, has transformative potential across all fields of 

science. Already, science blogs (e.g. LSE, n.d.) are becoming essential information sources, and increasingly 

cited, in scientific articles. The publication of scientific papers is now frequently accompanied by tweets. 

Alternative metrics or “altmetrics” are being developed to measure the impact of traditional scientific 

publications via their uptake in social media networks. Such metrics can clearly provide interesting information. 

However, further experimentation is required to test what kind of impact they are really measuring and how 

their deployment in evaluations might affect scientific behaviour and trust in science. 

Enhanced access to research data 

Data that is used in research and/or generated by research is the lifeblood of the science enterprise. Some 

fields of science are facing a reproducibility crisis and OA to the data [and code] that provides the basis for 

published scientific results is important as it allows for verification of those same results. Secondary analysis 

of data and application of the same data in different research fields can provide new scientific insights. 

Greater access to data can help to make science more inclusive and productive by allowing new actors to 

engage in the scientific process. The integration of data from diverse sources is important for science to 

be able to address complex societal challenges. Research data can also be an important substrate for 

innovation and economic growth. This is particularly the case when data are combined with mathematical 

algorithms, models and high-performance computing. 

The OECD first advocated for greater access to data from publicly funded research in 2006. Since then, 

both the rationale and the tools for enabling greater access have been strengthened considerably. The 
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OECD Principles and Guidelines for Access to Research Data from Public Funding (OECD, 2007) laid out 

13 overarching principles that have stood the test of time. More recently, with an added emphasis on open 

science, the essence of this earlier normative work has been distilled into four concise findability, accessibility, 

interoperability and reusability (FAIR) principles: research data should be Findable, Accessible, Interoperable 

and Re-usable. The FAIR principles have been widely adopted across countries and the focus is now on 

how they can be implemented at the operational level, where issues such as standards, security and protection 

of privacy need to be addressed. Funding, infrastructure and skills are also limiting factors. It is increasingly 

recognised that, as data volumes increase, the costs of stewarding this data become prohibitive, while, at 

the same time, much of the data probably has little secondary value. The mantra is moving towards making 

research data “as open as possible and as closed as necessary”, as opposed to making all data open to 

everyone (OECD, 2018a). 

Online data and associated services have dramatically changed many fields of science, from genomics to 

astronomy. The Global Earth Observation System that combines huge amounts of data from space, ocean 

and terrestrial observation devices, is essential for understanding the planet we live on and how it is changing. 

Social networking data is providing new insights into human behaviour and even the spread of disease 

(HealthMap, n.d.). Nevertheless, and despite broad agreement on the FAIR principles, a number of significant 

obstacles inhibit access to data. These include: i) costs and business models for data repositories; ii) trust 

and transnational barriers; iii) privacy and ethical considerations; iv) access to cyber-infrastructure and skills 

for data management and analysis; and v) incentives and rewards. The first three obstacles are considered 

in the paragraphs that follow, while the fourth and fifth are discussed at the end of this chapter.  

Business models for data repositories  

Research data repositories are the main focus for implementation of FAIR data principles. However, as 

data volumes and user demands expand, the costs of data management are straining research budgets. 

Recent analysis of almost 50 data repositories, across diverse areas of research, has identified key actions 

to improve long-term sustainability of these critical infrastructures (OECD, 2017e).  

Hence, repositories need to be considered as an integral part of the infrastructure for research and they 

need to have clearly articulated business models (Figure 3.1). This, in turn, affects how they are funded 

and, in particular, how public funding is allocated. Many valuable data resources start out with short-term 

project funding but then struggle to be sustainable. Mandates for OA need to be matched with incentives, 

including appropriate funding. Opportunities for cost-optimisation, including scale effects and technological 

advances, need to be actively pursued. Where the commercial sector provides repositories and associated 

data services for research, it should be consistent with the aim of enhanced long-term access. Monopoly 

arrangements, which can have longer-term negative consequences, should be avoided.   

Trust and transnational barriers  

International data networks play an important role to assure data quality across borders. The sharing of 

research data across national borders is critical for many areas of science and, in most cases, this depends 

not just on single global data repositories but on federated international data networks. Examples of such 

networks include the multidisciplinary World Data System, the International Virtual Observatory Alliance 

(IVOA) in astronomy and the Inter-University Upper Atmosphere Global Observation Network. These networks 

can play an important role in data quality assurance, with membership being conditional on compliance 

with agreed standards and recognised accreditation systems (e.g. Data Seal of Approval, n.d.).  

As is the case for individual repositories, these networks also need to have well-defined business models 

and value propositions. However, several additional challenges are associated with the establishment and 

maintenance of such networks (OECD, 2017b). The main barriers to sharing data across borders are the 

lack of policy coherence and trust between different communities.  
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Figure 3.1. Key elements of a business model for a data repository  

 

Source: OECD (2017a), “Business models for sustainable research data repositories”, https://doi.org/10.1787/302b12bb-en. 

Despite the growing acceptance of the FAIR principles as an aspirational aim, at the operational level there 

is considerable discordance around what data should be available to who and how – there is an absence of 

commonly agreed legal and ethical frameworks for sharing different types of public research data. Although 

no one model fits all, a number of organisational issues need to be addressed for networks to operate 

effectively. These range from aligning different objectives and user needs to governance arrangements. 

Ensuring inclusiveness and respecting cultural differences and capacity limitations can be problematic. 

Cutting across all of this are issues related to the adequacy of funding, and there is a need for funders to 

participate in relevant international discussions and fora, such as the Research Data Alliance, to improve 

co-ordination of their strategies and support for data infrastructure. 

While the technical issues should not be underestimated, establishing trust is perhaps the main obstacle 

to enhancing data access and implementing the FAIR principles. This applies both from the perspective of 

the data provider and the user (Box 3.1). In recent OECD work on sharing scientific data and information 

during crises, it was striking that lack of trust was identified as the major obstacle to cross-sectoral and 

transnational co-operation (OECD, 2018b). There are a number of policy actions that can be taken to address 

issues of trust. Some of these relate to technology, such as blockchain, or the adoption of standards and 

processes, e.g. the use of safe havens for working on sensitive data. However, trust is fundamentally a 

sociological issue and building trust requires dialogue and shared understanding.  

https://doi.org/10.1787/302b12bb-en
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Box 3.1. Barriers to data sharing: The researcher perspective 

A number of governments and research funding agencies are beginning to mandate increased sharing 

and/or OA to research data. However, four key issues impede data sharing by researchers. Each of 

these is amenable to policy interventions:1 

 Trust. This obstacle refers to the mutual mistrust between scientists (Do I trust the data? Will I receive 

credit for my data if someone else uses them? Will my data be used appropriately?). In the case 

of personal data, the need to ensure trust between human subjects/patients and users is also 

important. Where commercial sector users are involved, then issues of trust can be further amplified. 

o Policy options: Put in place processes for data tracking and citation; adopt trusted repository 

accreditation systems and support international data networks; strengthen ethics committees 

by including data experts; and organise public dialogues on personal data and privacy and 

develop consensus around key issues, such as consent, anonymisation and commercial use.  

o Good practices: Data Seal of Approval for repository certification; establishment of the Ada 

Lovelace Institute in the United Kingdom to ensure data and artificial intelligence (AI) work 

for people and society (Nuffield Foundation, n.d..  

 Burden. This obstacle relates to the time, expertise, and resources required by providers to make 

their data available and the time invested by users to discover available data.  

o Policy options: Develop national strategic plans, including long-term funding plans, for sustainable 

research data infrastructure (data repositories and services); require data management plans 

and provide funding to implement them in association with grant awards; provide dedicated funding 

to develop new data services; and identify and address data skills gaps in the research workforce. 

o Good practices: European Open Science Cloud Strategic Implementation Roadmap; Australian 

National Data Service Skills support services (ANDS, 2018).   

 Motivation, credit and reward. There is little incentive for scientists to make their data openly 

available. While publication of research results is critical for career advancement, there is little 

reward for developing and sharing useful data resources. 

o Policy options: Develop new indicators/measures for data sharing and incorporate these into 

institutional assessments and individual researcher evaluation processes; promote the use 

of unique digital identifiers for individual researchers and for data sets to enable citation and 

accreditation; and develop attractive career paths for data professionals, who are necessary 

for the long-term stewardship of research data and provision of services.  

o Good practices: Open Research Funders Group work on incentivising the sharing of research 

outputs through research assessment (ORFG, n.d.). 

 Governance and legal frameworks. A lack of understanding and clear guidance on data privacy 

regulations can inhibit data sharing by scientists. Likewise, in the absence of clear guidelines 

and relevant expertise, institutional review boards (IRBs) may act as a barrier to data sharing. 

o Policy options: Identify and support trusted brokers to mediate access to data; support the 

development of standardised data management plans and data use agreements; where 

appropriate, involve lay persons/patients in governance and oversight structures; encourage 

citizen science projects; and ensure that IRBs include the necessary expertise in data 

science, including legal aspects. 

o Good practices: National Services Scotland Save Haven for secure access to health service 

data (ISD Scotland, 2018); Science Europe initiative for the development of domain-specific 

data management protocols (Science Europe, 2018). 

1. This was identified at an INCF-OECD workshop on data sharing in dementia research, Stockholm, September 2015. 



90  3. DIGITAL TECHNOLOGY, THE CHANGING PRACTICE OF SCIENCE AND IMPLICATIONS FOR POLICY 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

Data privacy and ethics 

Trust is a particularly important issue with regards to access to personal data. New forms of personal data 

are becoming available in digital format from many sources, ranging from supermarket transactions to social 

media. These have enormous potential value for research, particularly when combined with administrative 

data, public health records or more traditional population survey data. Such data combinations can provide 

important new understanding into human behaviour, economic systems and the social determinants of health 

and well-being (OECD, 2013).   

The rapid advance of technology is raising ethical questions about the use of personal data that go beyond 

the scope of existing legal agreements. Several legal frameworks, most notably the General Data Protection 

Regulation (GDPR) in Europe, provide some guidance and establish agreed limits on the use of personal 

data. However, the technology is developing so fast that new possibilities for data use in research raise ethical 

dilemmas that transcend these frameworks. Something can be legal without being ethically acceptable. 

Indeed, this is implicit in the GDPR’s provision for ex ante Data Protection Impact Assessments (DPIAs) 

when a process involving data is likely to pose a high risk to people’s rights and freedoms. 

Increasing concern about data privacy and security has created an urgent need for science to adapt its 

governance and review mechanisms (OECD, 2016). The previously accepted requirements for the use of 

human subject data in research were informed consent and anonymisation. However, both of these are 

now being questioned as a consequence of advances in ICTs. For example, is it possible to get informed 

consent for specific purposes from all the individuals in very large sets of social media data? Can personal 

data from one source be truly anonymised when its linkage to other personal data is required for research?  

There is a critical role for institutional review boards and/or research ethics committees to ensure oversight 

of what research is being conducted with new forms of personal data – or in the language of the GDPR – 

to carry out DPIAs. These bodies need to be empowered, supported and have the expertise necessary to 

assess the balance between protecting personal privacy and ensuring the public good. Social consensus 

will need to be established both within and beyond the scientific community as to what the appropriate 

limits are on the use of new forms of data.  

It is difficult to foresee everything and, along the way, mistakes will certainly be made. Transparency and 

accountability will be critical to building a consensus on the use of new forms of data. Policy makers play 

an important role in ensuring the right governance frameworks are in place and supporting the necessary 

consultation and consensus building processes. In the United Kingdom, for example, public consultation 

has been important in establishing the core policies and operations of the Administrative Data Research 

Network (Verwulgen, 2017). 

Broader engagement in science  

Broader engagement in science is the third pillar of open science. Digitalisation is opening the scientific 

process to a variety of societal actors, including patient groups, citizen scientists, non-governmental 

organisations, industry and policy makers. This shift has considerable potential to improve the quality, relevance 

and translation into practice of scientific research. Societal engagement can take place across the research 

process – from agenda setting to co-production of research and dissemination of scientific information. 

Depending on the emphasis, societal engagement encompasses concepts such as responsible research 

and innovation and transdisciplinary research. Engagement, which depends on access to scientific information 

and data, is being transformed by the use of digital tools. 

Many countries promote citizen engagement to help ensure research relevance and promote transparency 

and trust in science. If science is to provide solutions for pressing societal challenges, then arguably it 

needs to be more closely engaged with society. In this context, digitalisation is providing powerful new 

tools to assist with societal engagement.  
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The first, and perhaps most critical, step in citizen engagement is to frame research agendas and set 

priorities for research investment. Recent OECD work has focused on this, including an in-depth analysis of 

key features and lessons learned from a variety of open agenda-setting exercises for research (OECD, 2017c). 

These exercises ranged from broadly focused citizen consultations and dialogues to inform international 

and national agenda setting through to more local and community-specific co-design processes.  

OECD (2017c) identified ten key issues for consideration in designing effective open agenda-setting 

processes. These begin with clear articulation of the rationale for a consultation; selection of an appropriate 

methodological approach; and consideration of resource implications and impact assessment. If these 

three areas are addressed, then open agenda setting can make research more relevant and may also 

generate new research questions. A case in point is the Great New Zealand Science Project, a national 

campaign to define research priorities. Citizens expressed the need for more research on care issues as 

opposed to drug development for the elderly. There is a substantial body of work and tested methods for 

citizen engagement (Engage2020, n.d.; PARTICIPEDIA, n.d.). As the interest in open agenda setting 

expands, these previous experiences can provide valuable lessons. 

Research infrastructures (RIs) provide a variety of shared services to the research community in all fields 

of science. Digitalisation is changing the operations of these infrastructures in many ways. Several of these 

RIs are at the forefront of the big data revolution, including the development of related hardware, software 

and standards. RIs are at the centre of many issues relating to open science – from information and data 

management to data security, privacy protection, analysis and training, and citizen science. Indeed, the 

growth of data and the policy emphasis on FAIR data are putting the financial sustainability of many RIs at 

risk (OECD, 2017e).  

At a more mundane level, RI managers, funders and potential users are faced with a simple and persistent 

challenge: identifying what RIs exist, what they can do and how they can be accessed. Scientists are likely 

familiar with the main RIs used routinely in their own field. However, access to facilities and resources in 

other research areas is increasingly required. Other potential RI users – from companies, the public sector 

or civil society – can find it difficult to explore the possibilities of RIs related to their interests. Optimising 

the use of RIs depends first on accessing systematically collected, up-to-date information. This is where 

digitalisation potentially provides a solution. 

Recently published work (OECD, 2017d) included an in-depth analysis of eight initiatives that are using 

dedicated digital platforms to promote broader access to, and more effective use of, RIs. These platforms 

ranged from digital catalogues providing standardised metadata on the resources available in a specific 

scientific domain, to national and regional service platforms enabling virtual access or online reservations 

of facilities.  

Greater co-operation across borders on definitions, standards and interoperability of digital platforms is 

needed to provide sustainable high-quality service for users. The OECD work identified seven areas requiring 

attention. Of these, the most important is the need for international co-operation around definitions, standards 

and interoperability. Different countries and institutions are developing ad hoc solutions to meet their own 

specific data aggregation needs. However, there is limited long-term planning and co-operation with other 

actors. The Mapping of European Research Infrastructure Landscape initiative, for example, consulted 

broadly with the community to develop a set of definitions, glossaries and RI classifications together with 

a metadata model. These have all been made openly available for other users, but take up has been limited.  

RIs, such as telescopes, can provide a focus for citizen science, i.e. the engagement of people who are 

not professional scientists in research processes. In the field of astronomy, for example, lay persons are 

helping to classify images of the night sky that are shared on line (Zooniverse, n.d.. More broadly, many 

fields are promoting citizen science as a way of both addressing unique issues and of promoting public trust 

in science. Digitalisation is rapidly changing what is feasible, enabling new approaches to crowdsourcing 

and access to untapped intellectual resources to solve problems (OECD, 2015; Dai, Shin and Smith, 2018).  
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Beyond data collection and analysis, ICT can also help engage the networked public in novel forms of 

discovery. For instance, in 2011, players of an online protein-folding game – Foldit – outperformed scientists 

by discovering the structure of a protein involved in the Mason-Pfizer monkey virus. This discovery was 

facilitated by complex software that permitted visualisation of protein shapes, allowing the employment of 

shape recognition and modification skills by persons not necessarily trained in biochemistry (University of 

Washington, 2012).  

At the more applied level, many companies are using online crowd sourcing platforms, such as InnoCentive, 

to help solve technological challenges, with significant prizes being awarded to problem solvers. Hackathons, 

that bring together interested actors, on line, are a common way of addressing software development 

challenges and are increasingly being organised in association with traditional scientific congresses. Through 

Kaggle, which is owned by Google, data scientists and users get together on line to find solutions to problems 

presented by research teams and private companies.   

Opening up science to engage new actors from civil society raises new issues in terms of preserving quality, 

ensuring proper attribution and ethics (Bonney et al., 2014). Engaging the right audience and promoting 

effective participation can be a particular challenge, especially when dealing with issues that are value 

laden. From the policy perspective, defining where citizen science approaches might be most valuable in 

specific contexts and how best to achieve this will require careful consideration (Box 3.2).   

Box 3.2. Policy challenges for citizen science 

Citizen science is a relatively recent, diverse and evolving approach to research. It presents both 

opportunities and challenges. Among other issues, more needs to be known about the following:  

 The quality of scientific output. Concerns exist that valid scientific methods are not followed in some 

projects managed by non-scientists and that quality control through peer review is often absent.  

 The types of science project for which citizen science might best be used. Not all research lends 

itself to citizen participation, which can significantly increase (or decrease) the overall cost of projects.  

 The trade-off between participant anonymity and the opportunity to earn peer recognition 

through publication.  

 The financial implications of crowdsourcing science. In particular, might financial incentives be 

used to attract firms and participants with specialised talent? Who owns the outputs if they have 

potential commercial value? 

 How the efficiency of citizen science might be improved. For instance, software might be used 

to track participant performance in some tasks, possibly avoiding the need for other participants 

to replicate these tasks. 

Promoting and steering open science systems in the digital world 

There are many actors – institutions and individuals – with different roles and responsibilities in the scientific 

enterprise. These actors also often have different, and even contradictory expectations, for science. For 

instance, a dean in a top-ranked research university may be primarily interested in high-impact publications 

accredited to his/her institution. Conversely, the ministry that provides research funding may be more 

interested in open data for innovation. Moreover, in the digital world, distance and location matter less  

than access to data and information. This increases the emphasis on international collaboration and/or 

competition and presents new challenges for the governance of science as whole. While digitalisation 

could make science both more inclusive and more productive, in the transition from the old to the new a 



3. DIGITAL TECHNOLOGY, THE CHANGING PRACTICE OF SCIENCE AND IMPLICATIONS FOR POLICY  93 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

number of important policy issues need to be addressed. These cut across the whole of science and are 

manifest at different scales, from local to global as discussed in the following paragraphs.  

Policy makers can play an important role in promoting the development and implementation of frameworks, 

common definitions and standards. As ICTs develop and open new possibilities, it is becoming clear that 

formal legal frameworks, IP regulations and standard-setting processes are lagging. Commercial actors, 

and, in some instances, specific research communities are establishing de facto standards for operating 

in the digital world. These are determining how information, data and technologies are used. In the best 

cases, community standards are adopted that ensure interoperability and openness. IVOA, for example, 

established community standards that have enabled researchers and interested citizens across the world 

to use astronomical data. In other cases, standards may reflect specific interests and severely limit access 

to and usage of scientific data and information. Likewise, ownership and licensing arrangements for digital 

information and data can either promote openness or limit access and reuse. With regards to text and data 

mining, for example, several countries have recently revised their copyright regulations to limit restrictions 

for research. Maintaining an optimal balance between protecting IP (which can promote innovation) and 

openness (to improve the efficiency and effectiveness of research) is an ongoing policy challenge. It is 

interesting that in some areas of medical research, public and private sector actors are building new open 

science partnerships in which OA and sharing of data, information and downstream technologies are the 

norm (e.g. SGC, 2019). 

Ensuring the provenance and traceability of scientific data and information are important with regards to 

quality assurance, accountability and accreditation. Digital traces of individuals, research groups, institutions 

and their scientific outputs are becoming an essential part of the evaluation and impact assessment 

processes for science (see Chapter 7). These depend on the use of open digital object identifiers (DOIs), 

including ORCIDs for researchers. Policy makers can play an important role in promoting the routine use 

of such DOIs.  

Mandates and incentives are valuable policy tools to promote open science, provided that they are used 

carefully. Mandates and incentives are often most effective when used in tandem (OECD, 2015). This is 

illustrated by the recent launch of Plan S (Science Europe, n.d. b) that aims for full and immediate OA to 

publications from publicly funded research. All recipients of research funding from any of the coalition 

partners promoting Plan S will be mandated to publish in compliant journals. At the same time, funders are 

working together on new incentives for open research. Plan S, for example, refers to the San Francisco 

Statement on Research Assessment (DORA, n.d.), which states that research needs to be assessed on 

its own merits rather than on the basis of the venue in which it is published. The proposals for Plan S 

include a transition period during which journals are expected to become compliant. However, it is clear 

that reward and recognition systems for research will need to value OA publishing if this is to be broadly 

adopted by the academic community.  

Similarly, for data sharing, new indicators and measures will be required not only to monitor how mandates 

for enhancing access are being implemented but also to incentivise activities to implement FAIR data 

(Ali-Khan, 2018). And societal engagement activities will require similar incentivisation. It is notable that 

the latest development of the Research Excellence Framework for the evaluation of UK higher education 

institutions puts increasing emphasis on scientific outputs other than journal publications (REF2021, n.d.). 

Digitalisation is transforming science very rapidly and this raises issues with regards to the skills that are 

required by the current and future scientific workforce. Digital skills are high on the education agenda in all 

OECD countries and, from an economic perspective, having an appropriately trained population is considered 

to be one of the key determinants of future productivity and growth (OECD, 2017f). From a research policy 

perspective the key questions are: what are the additional or specific digital skills that are, or will, be 

required for data intensive science? How do these skills need map onto the scientific workforce? How will 

the necessary skills be provided and what does this mean for science education and training?   
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“Data scientist” is a generic term that encompasses many different skills and roles (see Table 3.1 and also 

Chapter 2) and although the needs vary from one field to another there is a general consensus that more 

data scientists are required in public research. It has been suggested that for the European Open Science 

Cloud to be effective 500 000 data experts will need to be trained over the next five to ten years. The 

difficulty of meeting such a shortfall is compounded by a number of factors. It is not clear exactly what the 

needs are, while, at the same time, a plethora of new education and training courses for digital skills for 

science are appearing. Looking from the opposite perspective, it is not known whether these new educational 

and training courses are adequately addressing the real needs and gaps. Data science, in its different 

manifestations (Table 3.1), often does not align well with existing academic credit and reward systems that 

depend on publication outputs as opposed to code and data products. New career structures and professions 

will need to be developed, e.g. for data stewards. Moreover, there is intense competition from the commercial 

sector for digitally skilled individuals who, in “hot” areas such as AI, can earn salaries well above what is 

offered in academia. A strategic approach, that takes all these various factors into account, is required and 

this should consider how public and private actors can work together to develop human capital in ways 

that are mutually beneficial.   

Table 3.1. Digital science personnel and roles 

Data scientist A data scientist is a practitioner of data science. It is a generic term that encompasses many fields of specialised expertise. 

Data analyst 
This is someone who knows statistics. Analysts may know programming or may be expert in Excel. Either way, they can build 

models based on low-level data. Most importantly, they know which questions to ask of the data.  

Data engineer 
Operating at a level close to the data, data engineers write the code that handles data and moves them around. They may 

have some machine-learning background.  

Data steward 
A data steward is a person responsible for the management of data objects including metadata. These people think about 

managing and preserving data. They are information specialists, archivists, librarians and compliance officers.  

Research 
software 
engineer 

A growing number of people in academia combine expertise in programming with an intricate understanding of research. 
Research software engineers may start as researchers who spend time developing software to progress their research. They 
may also come from a more conventional software development background and are drawn to research by the challenge of 

using software to further research.  

Note: Depending on the field of research some of these roles may be combined in a given individual. They may be supporting or service provision 

roles or fully embedded in research projects.  

Source: This categorisation and the definitions are derived from the ongoing work of an OECD-GSF Expert Group on Digital Skills for  

Data Intensive Science and more detailed glossaries for digital science (CASRAI, n.d., Research Data Domain website, 

https://dictionary.casrai.org/Category:Research_Data_Domain; Science Europe, n.d. a, “Science Europe Data Glossary Main Page”, 

http://sedataglossary.shoutwiki.com/wiki/Main_Page).   

There is a need for long-term strategic planning and effective co-operation across countries and continents. 

Many countries are making significant investments in the digital infrastructure necessary to support science. 

This includes data repositories, as well as cyber-infrastructure such as high-performance or cloud computing. 

They are also investing heavily in “next-generation” technologies such as quantum computing. Within Europe, 

there is a major initiative to integrate these national initiatives within the European Open Science Cloud. 

Similar developments are taking place in the United States, and on a smaller scale, in Africa and other 

regions. These initiatives include both public and commercial sector service providers, e.g. for data storage and 

computing, and it will be important going forward to ensure their long-term sustainability and adaptability 

and avoid the “lock in” that can arise when effective monopolies develop. Global bodies, such as the 

Research Data Alliance (RDA, n.d.), that bring together data scientists and policy makers to develop 

community standards, technical fixes and social networks have an important role to play. 

Building trust both within the scientific community and between science and society remains the most 

pressing and difficult challenge for science in the digital world. With regards to the use of personal data in 

science, the challenges are fairly well known. Solutions are being developed and tested, including new 

mechanisms of governance and engagement with the public. However, there is a more ubiquitous challenge 

for science as a whole that will require more complex multifactorial solutions. While open science holds 

https://dictionary.casrai.org/Category:Research_Data_Domain
http://sedataglossary.shoutwiki.com/wiki/Main_Page
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great promise, it arrives at a time when trust in experts is being questioned and “alternative facts” are 

becoming common currency in social networks and political forums. Open science means more transparency 

and accountability, but it also means more scrutiny and more questioning from actors for whom access to 

science was previously restricted. As witnessed in relation to debates on climate change or the safety of 

vaccination, some groups will readily appropriate, distort or re-interpret scientific information and data to their 

own ends. It is critically important in today’s more open environment that the integrity of science itself is 

maintained, and that science is rigorous and published research results are reproducible. Digital technologies 

such as blockchain and AI can potentially assist in this quest (see Chapter 1). However, appropriately 

skilled research personnel and the right incentives and reward structures will be even more critical. 

Conclusion 

By enabling a new paradigm of open science, digitalisation is disrupting long-established scientific practices, 

norms and institutions. Recent work from the OECD and many other organisations has demonstrated that 

digitalisation, which has its origins in public research, is also having a huge impact on how this research is being 

conducted. This is opening up exciting new opportunities and, at the same time, throwing up new challenges. 

As with any disruptive change, different actors resist some of the emerging directions. Commercial publishers 

have served the scientific community well over many decades. They are understandably reluctant to change 

their business models. Scientists have built careers around “ownership” of data collections and are 

reluctant to share. Universities are used to being assessed on the number and/or quality of publications 

rather than data outputs or citizen engagement. Academic peer review, evaluation and promotion processes 

have been similarly focused on research excellence. Career paths have been designed for researchers in 

traditional scientific disciplines; they are poorly adapted to the new inter- and transdisciplinary opportunities 

of the digital world or the need to attract highly skilled data scientists in research support roles. Research 

funders are used to funding large-scale RIs over the long term. However, their mechanisms are less well 

adapted to the multitude of distributed data resources and services upon which research increasingly depends. 

Science systems as a whole are having to adapt rapidly and this inevitably entails a mix of some things 

that are completely new, adjustments in much of what already exists and renewal of what cannot or does not 

adapt. Of course, science continually evolves and so this scenario is not unique. However, the extent and 

depth of the impacts of digitalisation on science and the speed of change are likely beyond what science 

systems have experienced since World War II. Strategic planning, flexibility and careful development and 

implementation of policies will be necessary to ensure that we build on the best of the past in taking forward 

the future. There is also an opportunity that should be grasped to address and correct some of the 

emerging problems in science, including lack of reproducibility, lack of diversity in academia and precarity 

in research careers. This transition is occurring at a critical moment when trust in science needs to be 

assured. Achieving this will require vision, policy action and joint commitment from multiple stakeholders 

with an interest in the scientific enterprise. It needs to be both top-down (policy driven) and bottom-up 

(community led). 

Different fields of science and different organisations and countries are at different stages of adaptation to 

open science in the digital world. This provides important opportunities for mutual learning, exchange of 

good practices and co-operation. Scientific policy makers need to crowdsource within their own community, 

engaging other relevant actors as necessary, to identify existing or new solutions to support the positive 

evolution of science in the digital age. 
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Note

1 In 2016, more than 1.2 million new papers were published in the biomedical sciences alone, bringing the 

total number of peer-reviewed biomedical papers to over 26 million. However, the average scientist reads 

only about 250 papers a year (Noorden, 5 February 2014). By some measures the quality of scientific 

literature has been in decline. Some recent studies have found that most biomedical papers were not 

reproducible (Begley and Ellis, 2012). 

 

 

http://www.nature.com/news/scientists-may-be-reaching-a-peak-in-reading-habits-1.14658
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With a focus on the agri-food, automotive and transportation, and retail 

sectors, Chapter 4 explores the impacts of digital transformation on 

innovation and identifies sector-specific dynamics. In view of such impacts, 

the chapter evaluates how innovation policies should adapt to promote 

vibrant and inclusive innovation ecosystems effectively. Examples of novel 

innovation policy approaches implemented in various countries are 

provided. The chapter also synthesises key findings from the OECD’s 

Working Party on Innovation and Technology Policy and, specifically its 

Digital and Open Innovation project. It explores in detail the changes 

needed in innovation policy in the digital age, considering the impacts of the 

digital transformation on innovation across sectors.    

  

4 Digital innovation: Cross-sectoral 

dynamics and policy implications 
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Introduction  

Digital transformation is a multifaceted phenomenon that is impacting innovation in all sectors of the 

economy. New digital technologies, including artificial intelligence (AI), have enabled the creation of completely 

new digital products and services and the enhancement of traditional ones with digital features. Production 

processes are also subject to substantial change, with new modes of human-to-machine interaction (see 

Chapter 5). New opportunities are emerging across innovation processes – from research (e.g. the use of 

big data analytics, large-scale computerised experiments), to development (e.g. new techniques of simulation 

and prototyping) and commercialisation (e.g. use of marketplace platforms).  

Despite the dramatic changes, the impacts of digital transformation on innovation in specific sectors are largely 

unknown or anecdotal. Since industries significantly differ in their products and processes, their structures 

and in how they innovate, the impacts of digitalisation on innovation are also likely to differ. For instance, 

end products in primary sectors such as food or mining remain largely unchanged. Conversely, the media, 

music and gaming industries, to name a few, have completely digitised their product and service offering. 

Another example is the wide deployment of robots in the automotive industry, while automation remains at 

early stages in sectors such as agriculture and retail. There is, however, little systematic evidence about the 

sector-specific impacts of digital transformation on innovation. Understanding these differences matters for 

policy aimed at supporting innovation systems, because countries’ industry composition differs markedly. 

How is the digital transformation changing the innovation practices of firms? 

This section explores how digital transformation is changing the nature of business innovation. Digital 

technologies have lowered information-related production costs and increased the “fluidity” of innovative 

products. Digitised knowledge (i.e. knowledge that takes the form of data) and information can circulate 

and be reproduced, shared or manipulated instantaneously by any number of actors regardless of their 

location. As a consequence of changes in costs and fluidity, four trends affect innovation practices across 

all sectors of the economy in the digital age (Figure 4.1). 

Data are a key input for innovation 

Data are increasingly used in innovation processes. They help explore new areas of product and service 

development. They help gain critical insights about market trends, consumer demand and the behaviour 

of competitors. And they optimise development, production and distribution processes; tailor the product 

and service offering to specific demands; and rapidly adjust to changes in demand. The emergence of 

smart and connected products, as a result of increased sensing, connectivity and data embedded in 

products, significantly contributes to the generation of new data.  

Data have allowed the development of completely new services and business models. These have been 

enabled by the availability, and capacity to exploit, large amounts of real-time data. Examples include smart 

farming services, peer-to-peer accommodation services (e.g. Airbnb), on-demand mobility services (e.g. Uber), 

and platforms to search, compare and book accommodation and transportation options (e.g. Booking).  

Business data are increasingly used to optimise processes within firms, but also within supply chains. 

Manufacturing sectors exploit abundant real-time shop-floor data to identify patterns and relationships among 

discrete processes. This allows manufacturers to optimise data by reducing waste, saving energy, increasing 

flexibility and better using assets, among other areas (OECD, 2017). For example, UPS, a multinational 

logistics company, uses a fleet management system enhanced by data analytics. It allows for route 

optimisation, increasing the efficiency and flexibility of delivery processes and reducing fuel consumption. 

Data are also used to predict the needs of production systems, significantly lowering maintenance costs 

compared to unplanned maintenance and repair. In agriculture, data from a multiplicity of sensors can help 

farmers optimise use of water and other inputs to boost yields.  
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Figure 4.1. Characteristics of innovation in the digital age 

 

Source: OECD (2019), Digital Innovation: Seizing Policy Opportunities, https://doi.org/10.1787/a298dc87-en. 

Services innovation enabled by digital technologies 

Digital technologies offer opportunities for the creation of entirely new digitally enabled services. Predictive 

maintenance services, for example, use the Internet of Things (IoT), which involves the deployment of sensors 

and actuators connected to software systems. Other emerging services include on-demand transportation 

(e.g. Uber); and web-based businesses. New digital technologies have also propelled expansion of the 

sharing economy and greater customisation. Renting-as-a-service models can replace selling of equipment, 

for example, while businesses can harness software and data to adapt products to customers’ specific needs.  

Such changes also contribute to a blurring of boundaries between manufacturing and services innovation. 

On the one hand, manufacturing firms increasingly offer innovative services to complement goods – a 

process known as “servitisation” of manufacturing. For instance, John Deere, an agriculture machinery 

producer, has developed a software platform that provides farm-management support services based on 

sensor data. On the other hand, service providers increasingly invest in digital technology to improve their 

activities. For instance, big retailers invest intensively in data collection and analytics capabilities (e.g. to 

https://doi.org/10.1787/a298dc87-en
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personalise promotions and predict consumer trends), augmented and virtual reality (VR) (e.g. to develop 

digital fitting rooms) and the IoT (e.g. to improve inventory management).  

Innovation cycles are accelerating 

Digital innovations (such as three-dimensional [3D] printing and increasingly sophisticated simulations) 

introduce new and rapid innovation cycles by, among other routes, accelerating the processes of product 

design, prototyping and testing. Engineers and designers across manufacturing industries increasingly use 

“digital twins” (i.e. a 3D VR version of a production process or a product) to experiment with designs.  

New technologies also stimulate market launch of testing (beta) versions that are regularly updated to 

incorporate consumer feedback. This is common practice for software launches. Many firms are also 

adopting a “lean start-up” method, which consists of creating minimum viable products that can be brought 

to market. Once launched, producers collect feedback from users and integrate it into the next development 

round. For example, GE Appliances’ FastWorks system, based on lean innovation principles, involves 

consumers early in the development of new products such as refrigerators (General Electric, 2017).  

Innovation is becoming more collaborative  

Innovation ecosystems are becoming more open and diverse. Firms interact with research institutions and 

firms due to three reasons. First, they gain access and exposure to a richer pool of expertise and skills 

complementary to their own competences (e.g. data analytics). Second, such collaborations allow sharing 

of the costs and risks of uncertain investments in digital innovation. Third, reduced costs of communication 

allow greater interaction among actors engaged in innovation (e.g. firms, public research institutions [PRIs]), 

regardless of their location. 

Collaborations take different forms, including the following:  

 Data sharing. The non-rivalrous nature of data allows various actors from different organisations 

to use the same database simultaneously, even if they are located around the world. This has 

stimulated firms to share their data for research and innovation purposes, often with universities 

and research organisations, or trusted business partners. Challenges and hackathons are other 

popular tools for sourcing external ideas to foster data-driven innovation. 

 Partnerships. Partnerships with large technology firms, digital start-ups and PRIs are becoming 

more common in the digital age. Their goal is to join efforts to foster joint value creation, expand 

market potential and combine strengths. In so doing, they allow the closing of skills or competence 

gaps. Collaborations with digital start-ups, in particular, have also boomed in recent years. Such 

collaborations are seen as “digital accelerators”, with the flexibility needed to develop new disruptive 

technologies (Lund, Manyika and Robinson, 2016).  

 Platforms. Industry platforms are products, services or technologies created by one or several firms. 

They provide the foundation upon which different actors can innovate by developing complementary 

products, services or technologies using digital tools (Gawer and Cusumano, 2014). These platforms 

can thus serve as the effective industry standard. They make development processes more efficient 

and less costly, and reduce time-to-market for new products. An example is the SmartDeviceLink 

Consortium, an open-source platform for smartphone app development for vehicles, created by Ford 

and Toyota. Firms also use crowdsourcing platforms to source ideas from outside the organisation 

(either the general public or a pool of accredited experts). In so doing, they aim to solve a specific 

problem or challenge, including finding new product or design ideas. Such initiatives are often 

conducted through intermediary platforms, such as InnoCentive. 

 Acquisitions. The acquisition of innovative firms (particularly start-ups) by established firms is also 

a channel for collective innovation. Start-ups play a role in discovering and testing new markets 

and business models. When successful, they can be acquired by larger firms with access to capital 

and marketing channels that can help to scale a successful product.  
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The impacts of the digital transformation on innovation across sectors 

How are digital technologies integrating different sectors? 

Digital technologies are integrating and transforming sectors in different ways. This section explores 

transformations in the agriculture, automotive and retail sectors, which are considered representative of 

primary, secondary and tertiary sectors more generally. 

Agri-food sector 

In agriculture, intelligent and digitally connected machinery (IoT) enables the development of “precision 

farming”. This allows systems that help farmers improve the accuracy of operations. Such systems can 

also optimise the use of inputs (e.g. water, fertilisers, pesticides) to give each plant (or animal) exactly what 

it needs to grow optimally. Tractors and other agricultural machinery are equipped with a large number of 

sensors that capture information related to crops (e.g. soil conditions, irrigation, air quality, presence of 

pests). Drones equipped with sensors are also increasingly used for crop scouting and spraying. Data 

captured by in situ sensors, drones and satellites allows better monitoring of crop health, assessment of 

soil quality and optimisation of input use, thus having positive effects on productivity. 

The introduction of robots is another trend in farming. Fruit-picking, harvesting and milking are examples 

of the repetitive and standardised tasks performed by agricultural robots. Robots also generate data that 

can be exploited for different purposes. For instance, Lely Industry, a manufacturer of milking robots, collects 

data from robots to exploit information regarding the feed, animal health and milk quality of individual cows 

(Lely, 2016). Although agri-robots are generally in early stages of development, they are expected to 

increase efficiency and allow for more automated and precise agricultural practices. 

Large agriculture machinery producers and input suppliers, such as John Deere, are using large amounts 

of data collected through the IoT from farm applications and robots. They combine them with other data 

such as on the weather or markets to develop “smart farming” services. These use big data analytics and 

AI to inform farm-management decision making (Wolfert et al., 2017). Such systems can help farmers decide 

when to plant or harvest, to choose the type of crop to plant depending on soil conditions and market prices, 

and to automatically instruct agricultural robots to perform certain tasks. Precision and smart farming are still 

mainly restricted to large producers. Smaller producers are less likely to adopt precision farming technologies 

due to the costs of investment, and of learning how to use them and adapt production processes.  

The agri-food supply chain is starting to use the IoT to trace the origins and track the whereabouts of 

products, as well as their transportation and storage conditions. In this way, it improves transparency in the 

value chain. Blockchain and other distributed ledger technologies are also expected to offer opportunities 

for increasing the traceability of food products from harvest to point of sale. Major food companies are 

collaborating with IBM to apply blockchain to make food supply chains more transparent and traceable and 

to streamline payments (Tripoli and Schmidhuber, 2018).  

Automotive industry 

In the automotive sector, rapid developments in digital technology are completely reshaping the industry. 

These include vehicle innovations (e.g. car connectivity, autonomous driving), innovations in production 

(with smart factories or Industry 4.0 applications) and new business models (with the provision of after-

sales services and expansion into on-demand mobility services). 

Digital technology has given rise to connected cars that generate data from the physical world, receive and 

process data, and connect to other cars and devices. Connected cars allow for enhanced driver safety and 

convenience. New services include automatic emergency calls after an accident and real-time road hazard 

warnings for drivers, car repair diagnostics and systems of time-saving networked parking. In addition, 

navigation systems optimise route planning by considering real-time traffic conditions. 
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Developments in autonomous driving are being propelled by advances in the fields of robotics, AI, machine 

learning (ML) and connectivity. There are five different levels of automation – from driver assistance to 

complete automation. All new car models offer driving assistance systems. These take over parts of the 

vehicle motion control and support the driver with certain tasks such as parking and speed-keeping – but 

the driver is still in charge of driving. From a technical viewpoint, technology for highly automated driving 

in controlled environments is quite mature (VDA, 2015). At full driving automation, cars drive independently 

and react to their environment without intervention of the driver. Such systems are being tested in pilot 

projects (PSC/CAR, 2017), but opinions differ greatly on when full autonomy might be achieved.   

The automotive industry is also a leader in developing “smart factories”. It is adopting a variety of Industry 4.0 

applications, including Internet-connected robotics, data analytics, and cloud and high-performance 

computing (HPC), among others. For instance, Hirotec, a Japanese auto parts manufacturer, uses ML and 

data analytics to predict and prevent failures. This drastically reduces the cost of unplanned downtime 

(Hewlett-Packard, 2017). BMW has set the goal of knowing the real-time status of all important machines 

producing components from all their suppliers using IoT applications (Ezell, 2018). Kern and Wolff (2019) 

provide other examples of investments by carmakers and automotive suppliers to foster efficiency, and 

automate production and supply-chain processes.  

Firms in the automotive industry are also providing new services related to their products. Three areas of 

focus are the provision of new after-sales services (e.g. predictive maintenance); the development of 

alternatives to car ownership (e.g. vehicle subscription services); and expansion into on-demand mobility 

services (e.g. creation of own car-sharing brands).  

The retail sector 

In the field of retail, digital innovations aim at enhancing the consumer experience (both in physical and 

online shopping) and optimising processes (e.g. logistics, warehouse management). The largest investments 

focus on data collection (e.g. purchasing and browsing data) and data analytics capabilities. Such data 

provide insights on consumer needs and preferences that are used to customise the shopping experience, 

for instance by sending personalised advertisements and promotions. For example, Sephora uses data 

from customers’ online shopping histories by employing beacons in their stores. These beacons send 

smartphone notifications when customers near an item they had previously added in a digital shopping 

cart (Pandolph, 2017).  

Innovations in physical stores are expanding. Smart dressing rooms, for instance, might recommend 

specific items of clothing. Digital mirrors can allow customers to try on and compare several outfits, among 

other things. And automatic payment systems allow customers to skip check-out lines. AmazonGo, for 

example, recently established a cashier-free store in Seattle. By deploying sensors, cameras and other 

digital technologies, the store allows for automatic payment of products that customers take off the shelf, 

without the need to scan bar codes (Amazon, n.d.). Innovations in online retail include applications for 

designing or personalising products (e.g. shoes) through 3D visualisations. The automatic reordering of 

products may also become more common. The Amazon Dash Replenishment Service, for example, allows 

connected devices (e.g. washing machines, coffee machines) to reorder products automatically (e.g. laundry 

detergent, coffee beans) when supplies are running low. However, all of these innovations remain marginal 

and are mainly deployed by large retailers.   

The retail sector is using the IoT and robotics to better manage inventories (e.g. in warehouses) and 

optimise other processes. AI is also opening avenues for predictive analytics to strengthen forecasting and 

improve stock management. For example, Otto, a German online retailer, uses consumer data and a deep 

learning algorithm to predict what customers will buy a week before they order. The algorithm, which has 

90% accuracy, has led Otto to introduce an innovative stock management system that automatically 

purchases products from third-party brands (The Economist/Capgemini, n.d.).  
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Why are the implications of digital transformation likely to differ across sectors? 

The implications of the digital transformation likely differ across (and within) sectors due to a range of 

factors that can be grouped along three dimensions described below. 

Opportunities for innovation using digital technology 

Future technology developments are inherently uncertain. Yet given the important variety in the nature of 

a sector’s products and processes, some sectors will likely be disrupted to different extents by specific 

digital technologies (e.g. AI, IoT, drones, VR, 3D printing). Similarly, the transformation will probably take 

different forms and develop at different speeds. Depending on sectoral characteristics, digital technologies 

offer different opportunities for the following:  

 Digitalising final products and services. While some industries have completely digitised their 

products over past decades (e.g. the media, music and gaming industries), others remain mainly 

physical, such as food and consumer products. Many industries present a mix of digital and 

physical components in their final products, with the digital ones often becoming progressively 

more important. In the automotive industry, vehicles increasingly integrate digital features. Advanced 

infotainment systems and other functionalities enabled by connectivity and data analytics, for 

example, are becoming key considerations in consumer purchasing decisions.  

 Digitalising business processes. The extent to which digitalisation affects sectors’ business 

processes may differ. It depends on the nature of the activities and the characteristics of production 

(e.g. whether it involves the assembly of physical products, if the sector is characterised by  

long supply chains, etc.). In particular, digital technologies offer opportunities for digitalisation (and 

automation) of production processes; for interconnecting supply chains; and, for improving interactions 

with the final consumer.  

 Creating new digitally enabled markets and business models. New markets or market segments 

enabled by digital technologies, often adjacent to traditional sectors, have been created over recent 

years. E-commerce, car-sharing services and Fintech services are well-known examples. While 

new business models are emerging across the economy, the scale and disruption potential of these 

trends vary across sectors. In some cases, those business models may displace traditional ones 

(e.g. travel agencies). In other cases, the two models may co-exist and expand the product or 

service offering (e.g. brick-and-mortar existing simultaneously with online retail stores). 

Data needs and challenges for innovation 

Data have become a key input for innovation (Table 4.1). However, sectoral differences also arise because 

access to data differs across sectors. For instance, in some sectors, data needed for innovation are more 

sensitive than in others (such as patient data for healthcare innovations). They may also be less widely 

available (such as farming data for the development of smart farming services, given the low digital technology 

uptake in agriculture). The nature of data privacy and safety challenges also differ. The protection of data 

generated by connected cars and transportation systems is critical to avoid cyber-attacks that could put road 

safety at risk. At the same time, misuse and leakage of personal data are more problematic in the retail sector. 

Some sectors may also be more attractive than others to digital talent, creating differences in the capacity 

to exploit data. Data ownership conditions may likewise be a barrier to innovation in some sectors. This is 

particularly the case in sectors like agriculture where data are captured by some actors but exploited by others. 

Unequal access to data across firms can create an uneven playing field within the same sector. This, in 

turn, can contribute to higher market concentration. Amazon and Google, for example, have higher 

capacity to access large amounts of consumer data compared to other retailers.  

Table 4.1 presents some of the differences across the agri-food, automotive and retail sectors regarding the 

type of data needed for innovation purposes, and the opportunities and challenges related to those data types.  
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Table 4.1. Differences in data requirements for sectoral applications 

 Data needs Main challenges 

Agriculture  

(precision agriculture) 

● Aggregated sensor data from many farms 
(captured by sensors in the fields or mounted on 

machinery or drones)  

● Satellite data (GIS, meteorological data, satellite 

imagery on crops) 

● Low levels of digital technology adoption and  

high cost of uptake, particularly for small farms 

● Data sharing (resistance by farmers)  

● Data quality and integration 

● Building trusted data analytics 

Automotive industry 

(connected cars) 

● Data on driver behaviour, car status and location 

● Historical data on car performance (for predictive 

maintenance services) 

● GIS, real-time traffic information  

● Skills to exploit data 

● Data integration  

● Data privacy (risks, e.g. usage-based insurance 

contracts) 

● Road safety (risk of cyber-attacks) 

Retail 

(personalisation of 

consumer experience) 

● Customers and transactions data 

● Personal data on social media and search 

websites 

● Skills to exploit data 

● Data integration 

● Personal data privacy (risk e.g. price discrimination) 

Note: GIS = geographic information system. 

Source: Paunov and Planes-Satorra (2019), “How are digital technologies changing innovation? Evidence from the agriculture, automotive and 

retail sectors”, https://doi.org/10.1787/67bbcafe-en. 

Digital technology adoption and diffusion trends 

Digital technology adoption is heterogeneous across sectors (Calvino et al., 2018). Industry estimates, for 

instance, show that sectors such as automotive and financial services are leading AI adoption, relative to the 

tourism and construction sectors, among others (Bughin et al., 2017). Key factors influencing adoption include:  

 Capabilities to take up new digital technologies. Skills for adoption differ across sectors. For 

instance, sectors such as agriculture and construction, characterised by relatively high shares of 

low-skilled workers, register low uptake for digital technology. Capacities needed for digital technology 

adoption include skills at the individual level (e.g. information and communication technology skills, 

data expertise or previous related knowledge) and at the organisational level. The latter include 

the capacity to fine-tune organisational structures, adjust processes, redefine strategies and tasks, 

and manage emerging risks, among others. In this sense, the capacities of managers and their 

understanding of digital transformation dynamics are critical.  

 Pressures from market competition. The emergence of new players in the market (i.e. digital 

start-ups or tech firms that enter existing markets or create new activities adjacent to traditional 

sectors) is pushing incumbents to innovate. However, such pressures seem to be more critical in 

some sectors than others. For instance, in the automotive industry, the market entry of firms such 

as Alphabet (investing in the development of self-driving cars) and Zipcar (offering car-sharing 

services) is pressuring incumbents to embrace new digital innovations. 

Some sectors are particularly affected by the emergence of new platforms. For example, the emergence 

of digital platforms is significantly reshaping the tourism industry. Booking.com, for example, enables 

consumers to search, compare and book accommodation and transportation options. As another 

example, sharing economy platforms such as Airbnb provide for peer-to-peer accommodation services.  

 Specific sectoral characteristics and structures. Sectoral characteristics also influence the pace 

of digital technology adoption. Digital technologies, in particular, permeate the activities of different 

types of actors within the sector. These range from small and medium-sized enterprises (SMEs) to 

large firms, start-ups and research institutions. Large firms are usually early adopters of new 

technologies. This is mainly due to their access to the resources needed to invest in new technologies 

and the greater presence of workers with relevant technical expertise. However, large firms may 

also suffer from inertias, hierarchical and rigid structures, and legacy systems that can hamper 

their transformation (Rogers, 2003; Zhu, Kraemer and Xu, 2006). 

https://doi.org/10.1787/67bbcafe-en
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Firms integrated into global value chains may be more exposed to digital technologies, and have 

higher incentives to adopt them. Their suppliers may adjust more rapidly to requests from upstream 

producers to adopt new practices, and receive support to implement them. For instance, Toyota 

supports its suppliers in implementing their new production systems (Kern and Wolff, 2019). The 

diffusion of digital technology also relies on access to critical infrastructure, such as broadband 

Internet connection. This may be a challenge for sectors and firms located in more remote or rural 

areas. Firms in agriculture are a case in point.  

 Changes in consumer demands. Changes in consumer needs and demand are also driving the 

digital transformation of sectors. For example, in the field of transportation, younger generations 

(especially in urban areas) show a higher preference for on-demand schemes, rather than car 

ownership. In retail, consumers show increasing preference for a combination of physical and online 

shopping, along with the quick delivery of products purchased on line. 

 Level of resistance to change. Resistance to change may also differ across sectors, depending on 

several factors. First, resistance may correlate to awareness of the opportunities offered by digital 

technologies. It could also depend on the perceived and actual challenges for specific stakeholders 

from adopting digital technologies, including job displacement or retraining requirements. Finally, it 

could depend on absorption capacities and the state of development of sector-specific digital technology 

applications. Low levels of technology adoption may also reflect consumers’ resistance to change, 

which differs across products. For instance, the adoption of e-commerce was initially slow, while user 

rates of mobile transportation services differed strongly across countries. Similarly, there may be 

more resistance to accepting robots for personal care services than for new transportation services. 

How should innovation policy be adapted to the digital age? 

Effective policy for innovation in the digital age requires governments to adopt policy mixes that respond 

to the changing context created by the digital transformation. The new mix should comprise five key policy 

objectives (Table 4.2): ensuring access to data for innovation; providing support and incentives to innovation 

and entrepreneurship; building a strong public research system and having a skilled labour force; fostering 

collaborative, competitive and inclusive innovation ecosystems; and setting national policies that account 

for the global context and citizens’ concerns.   

Digital transformation calls for changes that affect all innovation policies, but to varying degrees. Some 

domains of policy need to adapt their target or content to digital innovation, while essentially preserving their 

core objectives. This includes, for instance, policies supporting entrepreneurship, digital technology adoption 

by SMEs and the development of general-purpose technologies. Other domains need more change, including 

rethinking of the policy rationale: that includes public research policy (moving towards open science).  

Access to data has become a major new theme in all policy domains relating to innovation, such as support 

for business innovation, public research and competition policy. Data has also become a policy domain 

itself, and subject to issues such as confidentiality and privacy that directly impact innovation.  

Policy makers need to address several new challenges. These include ensuring greater responsiveness 

and agility of policies and setting national policies in view of developments in global markets. They must 

also provide information and foster dialogue so that citizens are well-informed of the realities of new 

technologies and can participate in choices over funding of technologies considered harmful. Finally, they 

must ensure that government can access the advanced skills (e.g. in the field of AI) and data needed to 

design appropriate regulations and policies, ensuring that new technologies do not harm the public interest.  

A sectoral approach is required in policy areas in which sectors have different challenges and needs. This 

is particularly the case of data access policies, digital technology adoption and diffusion policies, and support 

for digital technology application development. For example, challenges in agriculture often relate to data 

sharing and integration, while in retail ensuring data privacy is a rising concern. 
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Table 4.2. Major changes to innovation policies called for by digitalisation, by policy domain 

Policy domain Changes required 

Access to data  
● Ensure access to data for innovators, taking into account the diversity of data and preserving rights and incentives1 

● Explore the development of markets for data  

Business innovation 

and entrepreneurship  

● Ensure that policies are anticipatory, responsive and agile 

● Support service innovation that implements digital technologies 

● Adapt the intellectual property (IP) system 

● Support the development of generic (multi-purpose) digital technologies1 

Public research, 

education and training  

● Promote open science (access to data, publications) 

● Support training in digital skills for science 

● Support interdisciplinarity in research 

● Invest in digital infrastructure for science 

● Facilitate co-creation between industry, science and civil society 

● Ensure that skills needed for digital innovation are being developed (in collaboration with education and labour 

market policy authorities) 

● Support education and training for the development of managerial skills 

Competition, 
collaboration and 

inclusiveness 

● Review competition policies from the perspective of innovation in the digital age (e.g. rules regarding takeovers 

and standards; IP systems)  

● Support digital technology adoption by all firms, particularly SMEs1 

● Support social and territorial inclusiveness in digital innovation activities 

Cross-cutting principles  

● Frame national policies in view of global markets  

● Engage with citizens to address technology-related public concerns 

● Adopt a sectoral approach to policy making when necessary 

1. These areas require a sectoral approach to innovation policy making. 

Note: SMEs = small and medium-sized companies. 

Source: OECD (2019), Digital Innovation: Seizing Policy Opportunities, https://doi.org/10.1787/a298dc87-en. 

Innovation is also influenced by many policies that do not target innovation explicitly or primarily. These 

include education, tax, health, environmental, transportation and competition policies. Competition policy 

is particularly critical for innovation, as only the right competitive environment will stimulate firms to innovate 

and foster innovation-driven growth. 

Data access policies 

As data now constitute a major input to innovation, access to data – and to the tools that gather and help 

interpret data – will influence who participates in digital innovation, and in what ways. Therefore, a specific 

policy agenda around data access needs to be developed (OECD, 2015a). The main objective of data access 

policies should balance two elements. On the one hand, policies should ensure the broadest possible 

access to data and knowledge (incentivising sharing and reuse) to favour competition and innovation. On 

the other, they should respect constraints regarding data privacy, ethical considerations, economic costs 

and benefits (i.e. incentives to produce the data) and intellectual property rights (IPRs).  

Policies should consider the diversity of data types, which imply differences in terms of access and other 

challenges associated with their generation, access and exploitation. Access to public research data, in particular, 

allows the reproduction and testing of the validity of scientific research, as well as reuse in further research 

(OECD, 2015b; Dai, Shin and Smith, 2018). Some governments establish open access to data generated 

by public services (e.g. weather monitoring, urban transportation, etc.) to foster data-driven innovation. For 

instance, the United Kingdom’s open data portal (data.gov.uk) publishes data from the central government, 

local authorities and other public bodies. It produces data on a variety of fields to create new opportunities 

for organisations to build innovative digital goods and services. Other examples include the open data portals 

of Canada (open.canada.ca), France (data.gouv.fr), Japan (data.go.jp) and the United States (data.gov).  

Appropriate conditions should also be created to allow for the emergence of data markets. Trading data 

may facilitate innovation, as well as put a price on data generation and curation for future use – thus 

https://doi.org/10.1787/a298dc87-en
https://data.gov.uk/
https://open.canada.ca/en
https://www.data.gouv.fr/en/
http://data.go.jp/
https://www.data.gov/
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facilitating the generation of more data. Markets in data also facilitate entry for start-ups that are data-poor 

but which require data as part of their business model. 

There are, however, major challenges to the development of markets for data (and knowledge). Data, for 

example, are often adapted to a specific context. Outside of this context, they may have little or no value, 

thereby limiting their transferability. Other key challenges relate to appropriability, difficulties in evaluating 

the true market value and quality of data, and privacy and safety concerns affecting personal data. 

Policies to support innovation and entrepreneurship 

Ensure that policies are anticipatory, responsive and agile 

The policy instruments needed for the digital age should be anticipatory, responsive and agile. The innovation 

agenda is shifting quickly and difficult to predict in certain fields. Therefore, government needs to become 

more flexible and alert to change, while keeping (prudential) rules of engagement when it comes to specific 

policy instruments.  

Approaches to ensuring this policy responsiveness includes the deployment and monitoring of small-scale 

policy experiments. These experiments can help assess their relevance and efficiency in a context of high 

uncertainty, based on which they could be easily scaled up, down or abandoned.  

In a context of rapid change, it is also critical to streamline application procedures for innovation support 

instruments. For example, the Pass French Tech programme offers fast-growing start-ups simplified and 

quick access to services to help them expand. These include services in areas such as financing, access 

to new markets, innovation and business development (French Tech, n.d.). 

Using digital tools to design innovation policy and monitor policy targets is another option to spur faster and 

more effective decision making. For example, semantic analysis can identify policy trends and anticipate 

technology trends by exploring large quantities of textual information (e.g. innovation policy documents, 

patents, scientific articles) (OECD, 2018). While still experimental, semantic analysis has tracked strengths 

in specific research fields based on text information contained in publications. It is also used by innovation 

and research funding agencies to build better connections between recipients of support, based on 

information on their research activities.  

Instruments that do not target a specific technology can also increase flexibility. Mission-oriented programmes 

that set a goal, but do not impose the means to reach it, can help. Such programmes may provide more 

autonomy and agility to choose the proper technological avenues to achieve a stated policy objective. The 

drawbacks of instruments without a specific target must be considered against the advantage of greater flexibility.  

Certain environments, including public procurement with specific requirements such as data security, leave 

no choice of technology. In these cases, designing public institutions connected to technology developments 

in the private sector can prove useful. These institutions inform governments about the latest technology 

developments, as well as their potential benefits and harmful impacts. Data61 in Australia and the Digital 

Catapult in the United Kingdom are examples. 

Support service innovation to lever the potential of digital technologies  

Many innovation policies have been conceived for innovation in manufacturing. This has specific characteristics, 

such as being intensive in research and development (R&D), and often resulting in patents. In a context 

where services are becoming a key focus of innovation, policy initiatives should ensure that services 

innovation is considered. Initiatives that include emerging needs in services innovation may include support 

for projects. These could develop entirely new services using digital technologies, such as the Smart and 

Digital Services Initiative in Austria (FFG, n.d.) It could also support manufacturing SMEs to develop 

services related to their products. Service design vouchers for manufacturing SMEs in the Netherlands is 

one such example (RVO, 2018).  
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Adapt intellectual property systems 

Digitalisation is transforming the IP system, which was designed for tangible inventions embodied in 

physical products and processes. With digitalisation, the IP system is confronted with new questions that 

require policy responses. These include how to incentivise data generation in a context of increasingly 

open data systems. Other questions revolve around ownership of patentable inventions produced by AI 

and the risk of counterfeiting the intangible components of products.  

New digital technologies may also help enforce IP rights. Eventually, blockchain-enhanced IP on a range 

of intangible goods (e.g. photographs, music, movies), and even some tangible goods (such as 3D-printed 

items with unique digital identifiers), may help to create a more easily enforced system of IP.  

Support development of generic digital technologies to respond to societal challenges  

Policies need to ensure that multi-purpose digital technologies are developed to serve both commercial 

purposes, as well as social and environmental purposes. Public research is often driving advances in these 

areas, while an increasing number of non-profit organisations and private firms also pursue such objectives. 

Many examples exist of AI applications that tackle social and environmental challenges. Satellite imagery 

and deep learning techniques, for example, identify illegal fishing vessels and monitor changes in coral 

reefs to inform conservation interventions. Audio sensors can detect illegal logging. And face detection, 

social network analysis and natural language processing can identify victims of sexual exploitation on the 

Internet (Chui et al., 2018). 

More engagement and debate with the public is also needed to demonstrate the characteristics of these 

technologies and appropriately address public concerns (e.g. privacy protection, development of applications 

for the public good). A lack of engagement with society creates the risk of a future backlash. This could 

have negative impacts on the development and deployment of important technologies. 

Public research and education policies 

Promote the digitalisation of public research 

Strengthening researchers’ digital skills would ensure that new digital tools are integrated into public research 

processes (e.g. ML techniques). Specific training and capacity building activities, for example, could be 

offered. This tactic is a key objective of the digitalisation strategy for the higher education sector in Norway 

(2017-21) (Government of Norway, 2018). 

Such measures should be accompanied by investments in digital tools and infrastructures critical for 

research (e.g. platforms for data sharing, supercomputing facilities for AI). Japan, for example, is investing 

more than USD 120 million annually to build a HPC infrastructure. It will be accessible to universities and 

public research centres for R&D purposes in a range of fields (HPCI, n.d.). 

Stimulating interdisciplinary research (e.g. cross-departmental research projects) and the engagement in 

partnerships with other research institutions and with industry is also a larger priority in a context of digital 

innovation. Specifically, data science applications provide for new opportunities across academic disciplines. 

With regards to partnerships between industry and science, physical spaces remain important for more 

collaborative innovation. However, digital platforms can complement physical space and allow for new 

types of collaboration across geographic boundaries.   

Build digital skills, including in the field of data analytics  

Education and research authorities play a key role in building the digital skills needed across the economy. 

Innovation authorities should collaborate with them towards several goals. First, they help identify the new 

skills needed in a context of digital transformation. Second, they should provide inputs for university and 
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vocational training programmes to fill critical talent shortages (e.g. data scientists) that often requires more 

interdisciplinary curricula. Innovation authorities also facilitate training for SMEs from traditional sectors to 

ensure they leverage the potential of digital technologies.  

Foster competitive, collaborative and inclusive innovation ecosystems  

Ensure that innovation ecosystems remain competitive 

Dialogue between competition authorities and agencies responsible for innovation policy should address 

key questions. These include the use of data as a source of market power and the contestability of markets 

in which digital innovation is an important feature. Such markets are subject to rapid innovation (a source 

of contestability) and various sorts of scale economies (a source of persistent concentration) (Guellec and 

Paunov, 2018). New policies need to recognise the importance and prevalence of economies of scale, 

while ensuring equal access to markets and resources. As competition in digital markets is global, greater 

co-operation across jurisdictions may also be needed (OECD, 2019).  

Do innovation policy instruments and regulations (e.g. support for R&D, IPRs) have an asymmetric impact 

on market players? Policy makers should consider this question. While such instruments are accessible to 

all in principle, this may not be the case in practice. For example, firms may lack capacity to defend their 

IP rights in courts, to co-operate effectively with public labs or to access public procurement.   

Support collaboration for innovation 

In the digital context, innovation policies will have to continue supporting collaborative innovative ecosystems. 

New policy approaches to foster collaborative innovation include the use of crowdsourcing and open 

challenges, as well as the creation of living labs. These approaches can help find innovative solutions to 

pressing challenges and foster co-creation between various actors.  

Intermediary organisations, such as the Fraunhofer Institutes in Germany and the Catapult Centres in the 

United Kingdom, have become central players in innovation ecosystems. They provide services such as 

matching firms that need technology solutions with potential suppliers. New research and innovation centres, 

often public-private partnerships, have also been created. These centres provide spaces for multidisciplinary 

teams of public researchers and businesses to work together on specific technology challenges. They 

often stand out for their innovative organisational structures. Examples include Data61 in Australia and 

Smart Industry Fieldlabs in the Netherlands (Box 4.1). 

Box 4.1. Approaches to fostering collaboration for innovation in the digital age 

Intermediary organisations 

Intermediary organisations connect different actors in innovation ecosystems (innovators, big firms, SMEs, 

investors, etc.) and facilitate their matching and collaboration for research and innovation. The Catapult Centres 

in the United Kingdom are a network of ten not-for-profit, independent physical centres that connect 

businesses with the United Kingdom’s research and academic communities. Each focuses on a strategic 

technology area in which the United Kingdom has great potential for growth. They offer a space with 

the facilities and expertise to enable businesses and researchers to collaboratively solve key problems and 

develop new products and services on a commercial scale. They also support firms’ access to foreign 

markets, create and retain high value jobs and attract inward investments from global technology businesses.  

https://catapult.org.uk/
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Collaborative research and innovation centres 

Several countries have created (networks of) research centres. Multidisciplinary teams of public researchers 

and businesses work together at these centres on specific technology challenges. The centres provide 

spaces for collaboration and co-creation and often stand out for their innovative organisational structures.   

CSIRO’s Data 61, Australia’s largest digital R&D centre, aims to put Australia at the forefront of data-

driven innovation. To that end, it pursues new-to-the-world fundamental and applied research and works 

collaboratively with others in the innovation ecosystem, including universities, government and industry. 

To increase agility and attract digital talent, Data61 has adopted a “start-up culture” or “market pull” 

approach. Organisational structures are flatter (i.e. with less middle-management and higher autonomy of 

staff). Research leaders are encouraged to experiment with new ideas and take risks, while maintaining 

alignment with the strategic goals of the organisation. A “challenge model” also stimulates multidisciplinary 

teams to address large-scale social and business challenges. 

Smart Industry Fieldlabs in the Netherlands are public-private partnerships to create physical or digital 

spaces for member companies and research institutions. Together, they develop, test and implement 

new smart industry technological solutions in various fields. These include automation, zero-defect 

manufacturing, flexible production, value creation based on big data, 3D printing and robotics. The  

32 field labs, which have flat structures and follow a project-based approach, typically include users of 

such solutions, (potential) suppliers and knowledge institutes. They are active in collaborative research, 

concept validation, prototyping, testing and validation.  

Crowdsourcing, open challenges and living labs 

Various countries are harnessing the power of crowdsourcing, open challenges and living labs to drive 

innovation. The US government designed Citizenscience.gov to enhance use of crowdsourcing to engage 

the public in addressing social needs and accelerate innovation. The Social Challenges Innovation 

Platform (SocialChallenges.eu) encourages social innovators and entrepreneurs to post innovative solutions 

to social and environmental challenges that public authorities, private firms or non-governmental 

organisations aim to solve. Pit Stops, organised by the Digital Catapult (United Kingdom), encourage 

open innovation by bringing together large firms, SMEs, start-ups and academics to solve specific 

technology challenges. Disruptive technology start-ups and other actors able to solve such challenges 

are identified via online open calls.  

Living labs are localised areas of experimentation within urban environments in which stakeholders 

collaboratively develop new technology-enabled solutions. For instance, Antwerp (Belgium) is developing 

a “City of Things” (IMEC, n.d.) through installation of a dense network of smart sensors and wireless 

gateways in buildings, streets and objects. Companies can use collected data to build innovative applications. 

Source: OECD (2019), Digital Innovation: Seizing Policy Opportunities, https://doi.org/10.1787/a298dc87-en. 

Support digital technology adoption by all firms, particularly SMEs 

Firms (particularly SMEs) face important challenges to adapt to digital transformation. Such adaptation 

requires much more than simply purchasing new computers and software: it is about changing business 

processes, and often business models. This frequently implies new strategic capabilities, new skills, 

investments in new technologies and significant restructuring, all of which can carry risk. The failure of 

many SMEs that do not digitalise would mean the loss of much industry and market-specific know-how, 

which constitutes unique intangible capital. It is therefore in the public interest to support adaptation of 

SMEs selectively; less competitive firms would not be saved to avoid hampering the competitive process. 

https://www.smartindustry.nl/fieldlabs/
https://doi.org/10.1787/a298dc87-en
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Innovative policy to foster diffusion focuses on helping test new digital technology applications by, for 

instance, creating test beds and regulatory sandboxes. Innovative initiatives also enhance early adoption 

of advanced digital technologies. To that end, they help innovators access state-of-the-art facilities and 

expertise (e.g. in the fields of AI or supercomputing). SMEs are revisiting traditional instruments to foster 

technology adoption such as awareness-raising campaigns, innovation vouchers, technical assistance and 

training. They are adapting these instruments to specific challenges of the digital age, and often use digital 

tools themselves (Box 4.2). 

Box 4.2. Demonstration and testing of new digital technologies 

Demonstration and testing facilities for SMEs 

Some countries have established new facilities for demonstration and testing of digital technologies to 

increase adoption. For instance, the SME 4.0 Competence Centres in Germany offer SMEs access to 

demonstrations of Industry 4.0 technologies and sector-specific applications (e.g. 3D printing, sensors). 

These demonstration facilities are often located at universities and allow simulation of business and 

production processes in a similar to real-world environment. 

The Industry Platform 4 FVG, established in the Italian region of Friuli Venezia Giulia, offers access to 

testing equipment, prototyping tools and demonstration labs. Several Austrian universities (TU Wien, 

TU Graz and Johannes Kepler University Linz) have also set up pilot factories, where SMEs have the chance 

to test new technologies and production processes without affecting production in their own facilities. 

Experimenting with new technology applications 

Countries are also exploring novel approaches to fostering testing of, and experimentation with, new 

digital technologies and applications in a near to real-world environment:  

 Test beds provide environments where new technology developments can be tested in controlled 

but near to real-world conditions. Such testing environments are critical for research and innovation 

in certain areas, such as autonomous driving, and help accelerate adoption of new digital 

technologies. Finland is establishing a number of test beds for the open development of transport 

and mobility solutions, including automated driving, mobility-as-a-service and intelligent traffic 

infrastructures. In the United Kingdom, the National Health Service (NHS) introduced a Test Beds 

Programme in partnership with industry. This allows testing of innovations such as combinations 

of new digital devices such as sensors, monitors and wearables with data analysis. It also permits 

testing of new approaches to service delivery facilitated by digital technologies. Successful 

innovations are then made available to the NHS and care organisations around the country.  

 Regulatory sandboxes provide a limited form of regulatory waiver or flexibility for firms to test 

new products or business models with reduced regulatory requirements. At the same time, they 

preserve some safeguards such as ensuring appropriate consumer protection. Sandboxes help 

identify and better respond to regulatory breaches and enhance regulatory flexibility. They are 

particularly relevant in highly regulated industries, such as financial services, transport, energy 

and health. The United Kingdom’s Financial Conduct Authority pioneered this approach with the 

launch of the Fintech regulatory sandbox, which encourages innovation in financial technology. 

The sandbox provides a controlled environment for businesses to test innovative products and 

services without incurring the regulatory consequences of pilot projects. 

Source: OECD (2019), Digital Innovation: Seizing Policy Opportunities, https://doi.org/10.1787/a298dc87-en. 

https://doi.org/10.1787/a298dc87-en
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Support social and territorial inclusiveness 

Innovation policies play a role in enhancing participation of disadvantaged individuals in digital innovation 

activities. Policy instruments address social inclusiveness challenges in the digital age in various ways. Some 

aim to build capacities through, for example, digital skills and entrepreneurship education. Others address 

discrimination and stereotypes through role models and mentoring programmes, among other approaches. 

Still others address barriers to entrepreneurship faced by disadvantaged groups. For example, they facilitate 

access to finance through microcredit or equity financing, provide tailored business development support 

and promote entrepreneurs’ insertion in business and research networks. Planes-Satorra and Paunov (2017) 

provides a wide range of examples of inclusive innovation policy. 

Digital transformation also seems to favour further concentration of innovation activities in innovation hotspots 

(often urban areas). This calls for policies favouring territorial inclusiveness. “Excellence-based policies”, 

even if blind to location, tend to favour geographical concentration, since excellence is concentrated. These 

indirectly widen the gap between leading and lagging regions. Excellence-based policies should therefore 

be complemented by policies favouring geographical inclusiveness and diversity. They should focus on 

fostering innovation at the local/regional level, and building on specific regional strengths and comparative 

assets (e.g. the Smart Specialisation approach in the European Union).  

Cross-cutting policy principles 

Set national policies in view of developments in global markets  

Digitalisation facilitates the circulation of knowledge, including across national borders, reducing government’s 

ability to restrict the benefits of policies to its own country. That raises a challenge for national policy makers. 

How can they ensure their own citizens (and taxpayers) benefit from national policies? Furthermore, how 

can they ensure that most of the benefits (e.g. income generated, productivity gained or jobs created) do 

not leak abroad? One related question concerns the sharing of benefits generated by the exploitation of 

national data (e.g. from the public health system) by foreign multinationals. Co-operative solutions are 

needed to share benefits arising from international flows of data and knowledge linked to national policies 

among countries. The OECD activity on base erosion and profit shifting is a step in this direction.1 

Engage with citizens to address technology-related public concerns 

The digital transformation has captured much attention in the press and with the public. In some cases, 

people fear leakages of personal data and the threat of robots taking jobs. Government and other actors 

must engage with stakeholders about these technologies and allay concerns through, for example, enhanced 

data privacy protection. Consultations with the public during the development of digital transformation 

strategies and other related policies can contribute. Without such public engagement, there is a risk of 

backlash in the future. This could have potentially negative impacts on the development and deployment of 

these technologies and their related benefits (OECD, 2015b; Winickoff, 2017; Dai, Shin and Smith, 2018). 

Adopt a sectoral approach to policy making when necessary 

Three policy domains require a sectoral approach when designing new initiatives, as the challenges and 

needs faced by sectors in these areas vary significantly:  

 Data access policies should consider the diversity of data types needed for innovation in different 

sectors, given differences to access and other challenges associated with data generation, exploitation 

and ownership. For instance, precision agriculture draws mainly on sensor and satellite data. 

Conversely, the retail sector exploits consumer purchasing and social media data to personalise 

services. In agriculture, challenges often relate to data sharing and integration, while in retail ensuring 

data privacy is a rising concern. 



4. DIGITAL INNOVATION: CROSS-SECTORAL DYNAMICS AND POLICY IMPLICATIONS  115 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

 Digital technology adoption and diffusion policies should be tailored to the specific needs of the 

sector and/or type of actor (notably SMEs). These policies could involve awareness-raising, training 

and education, demonstration and testing of new technologies, and the operation of intermediary 

institutions. Diffusion is more challenging in some sectors than in others due to different production 

structures. For instance, many small firms in a sector may be geographically dispersed or a few 

larger ones may be geographically close. Other challenges include the landscape of intermediary 

institutions and/or the availability of digital capacities.  

 Policies to develop sectoral applications of digital technologies should be supported where 

market conditions have inhibited the development of private sector-led solutions. This will ensure that 

such technologies provide benefits across the economy. The gap between future digital technology 

opportunities and current applications differs across sectors. This frustrates adoption of digital 

technologies for firms operating in certain sectors where applications do not yet exist (e.g. in the 

field of AI). Public research could support building more applications and help adoption across the 

economy where private business does not have the incentives to produce them.  

Designing effective and tailored support to sectors operating in the digital context requires, as a first step, 

establishing mechanisms to strengthen policy intelligence. These may include roadmaps or sectoral plans 

for strategic sectors, in collaboration with industry stakeholders and social partners. Examples include  

the Sector Competitiveness Plans developed by six sector-specific Industry Growth Centres in Australia 

(Government of Australia, 2017).  

Conclusion 

Chapter 4 discusses the impacts of the digital transformation on innovation processes and outcomes. The 

chapter highlights general trends across the economy and factors behind sector-specific dynamics. In view 

of such impacts, it evaluates how policy support to innovation should adapt and in what directions, 

providing examples of novel approaches to innovation policy. 

The chapter shows that four pervasive trends characterise innovation in the digital age. First, data are 

becoming key inputs for innovation. Second, innovation activities increasingly focus on the development 

of services enabled by digital technologies. Third, innovation cycles are accelerating. Virtual simulation, 

3D printing and other digital technologies are providing opportunities for more experimentation and versioning 

in innovation processes. Fourth, innovation is becoming more collaborative, given the growing complexity 

and interdisciplinary needs of digital innovation.  

Impacts of the digital transformation differ significantly across (and within) sectors. This reflects differences 

in the scope of opportunities for innovation in products, processes and business models that digital 

technologies offer. It reflects differences in the types of data needed for innovation and thus the challenges 

faced for their exploitation. And it reflects different conditions for digital technology adoption and diffusion. 

The effective development of innovation in the digital age requires that governments adopt policy mixes 

that respond to the changing context created by the digital transformation. The changes called for by 

digitisation affect the entire innovation policy spectrum, but to varying degrees across policies. Access to 

data has become a major new theme in all policy domains relating to innovation, such as innovation 

support, public research and competition. It has also become a policy domain in itself, subject for instance 

to confidentiality and privacy issues that also directly impact innovation.  

New challenges for policy making that need to be addressed include ensuring greater responsiveness and 

agility of policies; setting national policies in view of global markets; and engaging with citizens on new 

technologies. Equally, policy makers must ensure that government can access advanced skills, such as in 

the field of AI, and data needed to design appropriate regulations and policies. Finally, they must ensure 

that new technologies and applications do not harm the public interest. A sectoral approach is also needed 

in some policy areas. 
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This chapter is a first step in understanding the changing characteristics of innovation in the digital age. 

An important priority for policy research in this field involves gathering cross-country information on 

adoption rates of most advanced digital technologies at the firm level. Such data need to consider and 

capture ongoing technology trends. They would allow adoption trends to be measured across sectors, and 

across types of firms and locations. This, in turn, would help better identify the specific factors spurring and 

restraining digital innovation.  
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Chapter 5 examines a selection of policies to enable the use of digital 

technology in advanced production. The first part looks at individual 

technologies, their uses and specific policy implications, namely artificial 

intelligence (AI), blockchain and 3D printing, as well as new materials and 

nanotechnology (development of which involves complex digital 

processes). The second part addresses cross-cutting policy issues relevant 

to digital technology and production. These are technology diffusion, 

connectivity and data, standards-setting processes, digital skills, access to 

and awareness of high-performance computing, intellectual property 

systems and public support for research and development. With respect to 

public research, particular attention is given to research on computing and 

AI, as well as the institutional mechanisms needed to enhance the impact 

of public research. 
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Introduction 

New digital technologies are essential to raising living standards and countering the declining labour 

productivity growth in many OECD countries that has occurred over recent decades. Rapid population 

ageing – the dependency ratio in the OECD is set to double over the next 35 years – makes raising labour 

productivity more urgent. Digital technologies can increase productivity in many ways. For example, they 

can reduce machine downtime, as intelligent systems predict maintenance needs. They can also perform 

work more quickly, precisely and consistently with the deployment of increasingly autonomous, interactive 

and inexpensive robots. New digital technologies in production will also benefit the natural environment in 

several ways by, for instance, making zero-defect production a possibility in some industries.  

Digital production technologies: Recent developments and policy implications 

Artificial intelligence in production 

The Oxford English Dictionary defines artificial intelligence (AI) as “the theory and development of computer 

systems able to perform tasks normally requiring human intelligence”. Expert systems – a form of AI drawing 

on pre-programmed expert knowledge – have been used in industrial processes for close to four decades 

(Zweben and Fox, 1994). The development of deep learning using artificial neural networks1 has been the 

main source of recent progress in the field. As a result, AI can be applied to most industrial activities – from 

optimising multi-machine systems to enhancing industrial research (Box 5.1). Furthermore, the use of AI in 

production will be spurred by automated ML processes that can help businesses, scientists and other users 

employ the technology more readily. With respect to AI that uses deep learning techniques and artificial neural 

networks, the greatest commercial potential for advanced manufacturing is expected in supply chains, logistics 

and process optimisation (Chui et al., 2018). Survey evidence also suggests that the transportation and logistics, 

automotive and technology sectors lead in terms of the share of early AI-adopting firms (Küpper et al., 2018). 

Box 5.1. Recent applications of artificial intelligence in production 

A sample of recent uses of AI in production illustrates the breadth of the industries and processes involved: 

 In pharmaceuticals, AI is set to become the “primary drug-discovery tool” by 2027, according to 

Leo Barella, Global Head of Enterprise Architecture at AstraZeneca. AI in preclinical stages of 

drug discovery has many applications. They range from compound identification and managing 

genomic data to analysing drug safety data and enhancing in-silico modelling (AI Intelligent 

Automation Network, 2018). 

 In aerospace, Airbus deployed AI to identify patterns in production problems when building its 

new A350 aircraft. A worker might encounter a difficulty that has not been seen before, but the 

AI, analysing a mass of contextual information, might recognise a similar problem from other 

shifts or processes. Because the AI immediately recommends how to solve production problems, 

the time required to address disruptions has been cut by one-third (Ransbotham et al., 2017). 

 In semiconductors, an AI system can assemble circuitry for computer chips, atom by atom (Chen, 

2018); Landing.ai has developed machine-vision instruments to identify defects in manufactured 

products – such as electronic components – at scales that are invisible to the unaided eye. 

 In the oil industry, General Electric’s camera-carrying robots inspect the interior of oil pipelines, 

looking for microscopic fissures. If laid side by side, this imagery would cover 1 000 square 

kilometres every year. AI inspects this photographic landscape and alerts human operators 

when it detects potential faults (Champain, 2018). 
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 In mining, AI is used to explore for mineral deposits and optimise use of explosives at the mine 

face (even considering the cost of milling larger chunks of unexploded material). It is also used 

to operate autonomous drills, ore sorters, loaders and haulage trucks. In July 2017, BHP switched 

to completely autonomous trucks at a mine in Western Australia (Walker, 2017). 

 In construction, generative software uses AI to explore every permutation of a design blueprint. 

It suggests optimal building shapes and layouts, including the routing of plumbing and electrical 

wiring. Furthermore, it can link scheduling information to each building component. 

 AI is exploring decades of experimental data to radically shorten the time needed to discover 

new industrial materials, sometimes from years to days (Chen, 2017). 

 AI is enabling robots to take plain-speech instructions from human operators, including commands 

not foreseen in the robot’s original programming (Dorfman, 2018). 

 Finally, AI is making otherwise unmanageable volumes of Internet of Things (IoT) data actionable. 

For example, General Electric operates a virtual factory, permanently connected to data from 

machines, to simulate and improve even highly optimised production processes. To permit predictive 

maintenance, AI can process combined audio, video and sensor data, and even text on 

maintenance history. This can greatly surpass the performance of traditional maintenance practices. 

Beyond its direct uses in production, the use of AI in logistics is enabling real-time fleet management, while 

significantly reducing fuel consumption and other costs. AI can also lower energy consumption in data 

centres (Sverdlik, 2018). In addition, AI can assist digital security. For example, the software firm Pivotal 

has created an AI system that recognises when text is likely to be part of a password, helping to avoid 

accidental online dissemination of passwords. Meanwhile, Lex Machina is blending AI and data analytics 

to radically alter patent litigation (Harbert, 2013). Many social-bot start-ups also automate tasks such as 

meeting scheduling (X.ai), business-data and information retrieval (butter.ai), and expense management 

(Birdly). Finally, AI is being combined with other technologies – such as augmented and virtual reality – to 

enhance workforce training and cognitive assistance. 

AI could also create entirely new industries based on scientific breakthroughs enabled by AI, much as the 

discovery of deoxyribonucleic acid (DNA) structure in the 1950s led to a revolution in industrial biotechnology 

and the creation of vast economic value – the global market for recombinant DNA technology has been 

estimated at USD 500 billion.2  

Adopting AI in production: main challenges  

To date, despite AI’s potential, its adoption in manufacturing has been limited. By one estimate, even among 

AI-aware firms, only around 20% use one or more AI technologies in core areas of business or at scale (Bughin 

et al., 2017). A more recent survey of 60 US manufacturers with annual turnovers of between USD 500 million 

and USD 10 billion yielded still more striking evidence of the limited diffusion of AI, finding that: 

“Just 5% of respondents have mapped out where AI opportunities lie within their company and developing a clear 
strategy for sourcing the data AI requires, while 56% currently have no plans to do so.” Atkinson and Ezell (2019). 

The challenges in using AI in production relate to its application in specific systems and the collection and 

development of high-quality training data.3 The highest-value uses of AI often combine diverse data types, 

such as audio, text and video. In many uses, training data must be refreshed monthly or even daily (Chui 

et al., 2018). Furthermore, many industrial applications are still somewhat new and bespoke, limiting data 

availability. By contrast, sectors such as finance and marketing have used AI for a longer time (Faggella, 

2018). Without large volumes of training data, many AI models are inaccurate. A deep learning supervised 

algorithm may need 5 000 labelled examples per item and up to 10 million labelled examples to match 

human performance (Goodfellow, Bengio and Courville, 2016).  
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In the future, research advances may make AI systems less data-hungry. For instance, AI may learn from 

fewer examples, or generate robust training data (Simonite, 2016). In 2017, the computer program AlphaGo 

Zero famously learned to play Go using just the rules of the game, without recourse to external data. In 

rules-based games such as chess and Go, however, high performance can be achieved based on simulated 

data. But for industry, training data come from real-world processes and machines.4  

Data scientists usually cite data quality as the main barrier to successfully implementing AI. Industrial data 

might be wrongly formatted, incomplete, inconsistent, or lack metadata. Data scientists will often spend 

80% of their time cleaning, shaping and labelling data before AI systems can be put to work. The entire 

process requires skilled workers, and may have no a priori guarantee of success. Data might have to be 

drawn and unified from data silos in different parts of a company. Customer data, for instance, may be held 

separately from supply-chain data. Connecting data silos could also require complementary ICT investments. 

Moreover, some processes may simply lack the required volumes of data.  

Adding to the challenge, manufacturers might have accuracy requirements for AI systems much greater 

than those in other sectors. For instance, degrees of error acceptable in a retailer’s AI-based marketing 

function would likely be intolerable in precision manufacturing. Furthermore, implementing AI projects 

involves a degree of experimentation. Consequently, it may be difficult to determine a rate of return on 

investment (ROI) a priori, especially by comparison with more standardised investments in ICT hardware. 

Generally, SMEs are less able to bear risk than larger firms, so uncertainty about the ROI is a particular 

hindrance to AI uptake in this part of the enterprise population.   

The considerations described above highlight the importance of skills for firms attempting to adopt AI. 

However, AI skills are everywhere scarce. Even leading tech companies in Silicon Valley report high vacancy 

rates in their research departments, owing to acute competition for AI-related talent. High salaries paid to 

capable AI researchers reflects the demand for such skills: OpenAI, a non-profit, paid its top researcher 

more than USD 1.9 million in 2016. AI talent is also mobile, and highly concentrated across countries. A 

recent estimate suggests that half of the entire AI workforce in Europe is found in just three countries: the 

United Kingdom, France and Germany (Linkedin Economic Graph, 2019). Furthermore, AI projects often 

require multidisciplinary teams with a mix of skills, which can be challenging to find. And because many 

talented graduates in data science and ML are drawn to work on novel AI applications, or at the research 

frontier, retaining talent in industrial companies can be another difficulty. Skills shortages are unlikely to 

disappear in the near term, given the many years needed to fully train AI specialists (Bergeret, 2019).   

Companies face the question of how best to access the expertise needed to advance AI use. For many 

companies, turning to universities or public research organisations might not be a first choice. Uncertainties 

about the match in understanding of business needs, ownership of intellectual property (IP), operational 

timeframes, or other concerns, can make this route unattractive to some firms. Firms might turn to providers 

of management consultancy services, but for SMEs these services could be excessively expensive, and 

might give rise to concerns regarding dependence on the service provider. Some mid-sized and larger 

industrial companies have decided to create their own in-house AI capabilities, but this path is generally 

limited to companies with significant financial and other resources. This overall environment highlights the 

importance of public, or public-private, institutions to help accelerate technology diffusion (see section 

“Technology diffusion” below).        

AI: Specific policies 

Perhaps the two most important areas where governments can assist in the uptake of AI concern support 

for the development of skills, and the funding and operational practices of institutions for technology diffusion. 

Both of these policy areas are discussed later in this chapter. This subsection focuses on issues relating 

to training data, and measures to address hardware constraints. Later subsections also refer to relevant 

issues in connection with rules for IP, and research support. Many other policies – not addressed here – 

are most relevant to the (still uncertain) consequences of AI. These include policies for competition; economic 

and social policies that mitigate inequality; and measures that affect public perceptions of AI. Well-designed 
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policies for AI are likely to have high returns because AI can be widely applied and accelerate innovation 

(Cockburn, Henderson and Stern, 2018). Some of the policies concerned – such as those affecting skills – 

are also relevant to any new technology.  

Governments can take steps to help firms generate value from their data 

Many firms hold valuable data, but don’t use them effectively. They may lack in-house skills and knowledge, 

a corporate data strategy or data infrastructure, among other reasons. This can be the case even in firms 

with enormous financial resources. For example, by some accounts, less than 1% of the data generated 

on oil rigs are used (The Economist, 2017).  

However, non-industrial sources of expertise – including many AI start-ups, universities and other institutions – 

could create value from data held by industrial firms. To help address this mismatch, governments can act 

as catalysts and honest brokers for data partnerships. Among other measures, they could work with 

relevant stakeholders to develop voluntary model agreements for trusted data sharing. For example, the 

US Department of Transportation has prepared the draft “Guiding Principles on Data Exchanges to Accelerate 

Safe Deployment of Automated Vehicles”. The Digital Catapult in the United Kingdom also plans to publish 

model agreements for start-ups entering into data-sharing agreements (DSAs). 

Government agencies can co-ordinate and steward DSAs for AI purposes 

Government agencies can co-ordinate and steward DSAs for AI purposes. DSAs operate between firms, 

and between firms and public research institutions. In some cases, all data holders would benefit from data 

sharing. However, individual data holders are often reluctant to share data unilaterally – it might be of strategic 

importance to a company, for instance – or remain unaware of potential data-sharing opportunities. For 

example, 359 offshore oil rigs were operational in the North Sea and the Gulf of Mexico as of January 2018. 

AI-based prediction of potentially costly accidents on oil rigs would be improved if this statistically small 

number of data holders were to share their data. In fact, the Norwegian Oil and Gas Association asked all 

members to have a data-sharing strategy in place by the end of 2018. In such cases, government action 

could be helpful. Another example where DSAs might be useful relates to data in supply chains. Suppliers 

of components to an original equipment manufacturer (OEM) might improve a product using data on how 

the product performs in production. Absent a DSA, the OEM might be reluctant to share such data, even 

if doing so could benefit both parties. 

The Digital Catapult’s Pit Stop open-innovation activity, which complements its model DSAs, is an example 

of co-ordination between data holders and counterparts with expertise in data analysis. Pit Stop brings 

together large businesses, academic researchers and start-ups in collaborative problem-solving challenges 

around data and digital technologies. The Data Study Group at the Turing Institute, also in the United 

Kingdom, enables major private- and public-sector organisations to bring data science problems for analysis. 

The partnership is mutually beneficial. Institute researchers work on real-world problems using industry 

datasets, while businesses have their problems solved and learn about the value of their data.  

Governments can promote open data initiatives  

Open data initiatives exist in many countries, covering diverse public administrative and research data. To 

facilitate AI applications, disclosed public data should be machine-readable. In addition, in certain situations, 

copyright laws could allow data and text mining. The laws would need to prevent that use of AI does not 

lead to substitution of the original works or unreasonably prejudice legitimate interests of the copyright 

owners. Governments can also promote the use of digital data exchanges5 that share public and private 

data for the public good. Public open data initiatives usually provide access to administrative and other 

data that are not directly relevant to AI in industrial companies. Nevertheless, some data could be of value 

to firms, such as national, regional or other economic data relevant to demand forecasts. Open science 

could also facilitate industrial research (see Chapter 3).  



124  5. ARTIFICIAL INTELLIGENCE, DIGITAL TECHNOLOGY AND ADVANCED PRODUCTION 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

Technology itself may offer novel solutions to use data better for AI purposes 

Governments should be alert to the possibilities of using AI technology in public open data initiatives. 

Sharing data can require overcoming a number of institutional barriers. Data holders in large organisations, 

for example, can face considerable internal obstacles before receiving permission to release data. Even 

with a DSA, data holders worry that data might not be used according to the terms of an agreement, or 

that client data will be shared accidentally. In addition, some datasets may be too big to share in practical 

ways: for instance, the data in 100 human genomes could consume 30 terabytes (30 million megabytes).  

Uncertainty over the provenance of counterpart data can hinder data sharing or purchase, but approaches 

are being developed to address this concern and incentivise secure data exchange. For example, Ocean 

Protocol, created by the non-profit Ocean Protocol Foundation, combines blockchain and AI (Ocean Protocol, 

n.d.). Data holders can obtain the benefits of data collaboration, with full control and verifiable audit. Under 

one use case, data are not shared or copied. Instead, algorithms go to the data for training purposes, with 

all work on the data recorded in the distributed ledger. Ocean Protocol is building a reference open-source 

marketplace for data, which users can adapt to their own needs to trade data services securely. 

Governments can also help resolve hardware constraints for AI applications 

AI entrepreneurs might have the knowledge and financial resources to develop a proof-of-concept for a 

business. However, they may lack the necessary hardware-related expertise and hardware resources to 

build a viable AI company. To help address such issues, Digital Catapult runs the Machine Intelligence 

Garage programme. It works with industry partners such as GPU manufacturer NVidia, intelligent processing 

unit-producer Graphcore and cloud providers Amazon Web Services and Google Cloud Platform. Together, 

they give early-stage AI businesses access to computing power and technical expertise. Policies addressing 

hardware constraints in start-ups might not directly affect industrial companies, but they could positively 

shape the broader AI ecosystem in which industrial firms operate.  

Blockchain in production 

Blockchain – a distributed ledger technology (DLT) – has many potential applications in production (Box 5.2). 

Blockchain is still an immature technology, and many applications are only at the proof-of-concept stage. 

The future evolution of blockchain involves various unknowns, including with respect to standards for 

interoperability across systems. However, similar to the “software as a service” model, companies such as 

Microsoft, SAP, Oracle, Hewlett-Packard, Amazon and IBM already provide “blockchain as a service”. 

Furthermore, consortia such as Hyperledger and the Ethereum Enterprise Alliance are developing open-source 

DLTs in several industries (Figueiredo do Nascimento, Roque Mendes Polvora and Sousa Lourenco, 2018). 

Adopting blockchain in production creates several challenges: blockchain involves fundamental changes 

in business processes, particularly with regard to agreements and engagement among actors in a supply 

chain. When many computers are involved, the transaction speeds may also be slower than some alternative 

processes (however, fast protocols operating on top of blockchain are under development). Blockchains 

are most appropriate when disintermediation, security, proof of source and establishing a chain of custody 

are priorities (Vujinovic, 2018). A further challenge is that much blockchain development remains atomised. 

Therefore, the scalability of any single blockchain-based platform – be it in supply chains or financial 

services – will depend on whether it can operate with other platforms (Hardjano, Lipton and Pentland, 2018). 

Blockchain: Possible policies 

Regulatory sandboxes help governments better understand a new technology and its regulatory implications. 

At the same time, they enable industry to test new technology and business models in a live environment. 

Evaluations of the impacts of regulatory sandboxes are sparse; one exception is FCA (2017), even if this 

assessment covers only the first year of a scheme in the United Kingdom. Blockchain regulatory sandboxes 
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mostly focus on Fintech. They are being developed in countries as diverse as Australia, Canada, Indonesia, 

Japan, Malaysia, Switzerland, Thailand and the United Kingdom (Figueiredo do Nascimento, Roque Mendes 

Polvora and Sousa Lourenco, 2018). The scope of sandboxes could be broadened to encompass blockchain 

applications in industry and other non-financial sectors. The selection of participants needs to avoid benefiting 

some companies at the expense of others.  

By using blockchain in the public sector, governments could raise awareness of blockchain’s potential, when 

it improves on existing technologies. However, technical issues need to be resolved, such as how to trust 

the data placed on the blockchain. Trustworthy data may need to be certified in some way. Blockchain may 

also raise concerns for competition policy. Some large corporations, for example, may mobilise through 

consortia to establish blockchain standards, e.g. for supply-chain management. 

Box 5.2. Blockchain: Potential applications in production 

By providing a decentralised, consensus-based, immutable record of transactions, blockchain could 

transform important aspects of production when combined with other technologies. Several examples 

are listed below: 

 A main application of blockchain is tracking and tracing in supply chains. One consequence 

could be less counterfeiting. In the motor-vehicle industry alone, firms lose tens of billions of 

dollars a year to counterfeit parts (Williams, 2013). 

 Blockchain could replace elements of enterprise resource-planning systems. The Swedish software 

company IFS has demonstrated how blockchain can be integrated with enterprise resource-

planning systems in the aviation industry. Commercial aircraft have millions of parts. Each part 

must be tracked, and a record kept of all maintenance work. Blockchain could help resolve 

failures in such tracking (Mearian, 2017). 

 Blockchain is being tested as a medium permitting end-to-end encryption of the entire process 

of designing, transmitting and printing three-dimensional (3D) computer-aided design (CAD) files. 

The goal is that each printed part embody a unique digital identity and memory (Figueiredo do 

Nascimento, Roque Mendes Polvora and Sousa Lourenco, 2018). If successful, this technology 

could incentivise innovation using 3D printing, protect IP and help address counterfeiting. 

 By storing the digital identity of every manufactured part, blockchain could provide proof of 

compliance with warranties, licences and standards in production, installation and maintenance 

(Figueiredo do Nascimento, Roque Mendes Polvora and Sousa Lourenco, 2018). 

 Blockchain could induce more efficient use of industrial assets. For example, a trusted record 

of the usage history for each machine and piece of equipment would help develop a secondary 

market for such assets. 

 Blockchain could help monetise the IoT, authenticating machine-based data exchanges and 

implementing associated micro-payments. In addition, recording machine-to-machine exchanges 

of valuable information could lead to “data collateralisation”. This could give lenders the security 

to finance supply chains and help smaller suppliers overcome working-capital shortages (Maerian, 

2017). By providing verifiably accurate data across production and distribution processes, 

blockchain could also enhance predictive analytics. 

 Blockchain could further automate supply chains through the digital execution of “smart contracts”, 

which rely on pre-agreed obligations being verified automatically. Maersk, for example, is 

working with IBM to test a blockchain-based approach for all documents used in bulk shipping. 

Combined with ongoing developments in the IoT, such smart contracts might eventually lead to 

full transactional autonomy for many machines (Vujinovic, 2018). 
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3D printing 

3D printing is expanding rapidly, thanks to falling printer and materials prices, higher-quality printed objects 

and innovation in methods. For example, 3D printing is possible with novel materials, such as glass, biological 

cells and even liquids (maintained as structures using nanoparticles). Robot-arm printheads allow objects 

to be printed that are larger than the printer itself, opening the way for automated construction. Touchless 

manipulation of print particles with ultrasound allows printing of electronic components sensitive to static 

electricity. Hybrid 3D printers combine additive manufacturing with computer-controlled machining and milling. 

Research is also advancing on 3D printing with materials programmed to change shape after printing. 

Most 3D printing is used to make prototypes, models and tools. Currently, 3D printing is not cost-competitive 

at volume with traditional mass-production technologies, such as plastic injection moulding. Wider use of 

3D printing depends on how the technology evolves in terms of the print time, cost, quality, size and choice 

of materials (OECD, 2017a). The costs of switching from traditional mass-production technologies to 3D 

printing are expected to decline in the coming years as production volumes grow. However, it is difficult to 

predict precisely how fast 3D printing will diffuse. Furthermore, the cost of switching is not the same across 

all industries and applications.  

3D printing: Specific policies 

OECD (2017a) examined policy options to enhance 3D printing’s effects on environmental sustainability. 

One priority is to encourage low-energy printing processes (e.g. using chemical processes rather than 

melting material, and automatic switching to low-power states when printers are idle). Another priority is to 

use and develop low-impact materials with useful end-of-life characteristics (such as compostable biomaterials). 

Policy mechanisms to achieve these priorities include: 

 targeting grants or investments to commercialise research in these directions 

 creating a voluntary certification system to label 3D printers with different grades of sustainability 

across multiple characteristics, which could also be linked to preferential purchasing programmes 

by governments and other large institutions. 

Ensuring legal clarity around intellectual property rights (IPRs) for 3D printing of spare parts that are no 

longer manufactured could also be environmentally beneficial. For example, a washing machine that is no 

longer in production may be thrown away because a single part is broken. A CAD file for the required part 

could keep the machine in operation. However, most CADs are proprietary. One solution would be to 

incentivise rights for third parties to print replacement parts for products, with royalties paid to the original 

product manufacturers. 

Government can help develop the knowledge needed for 3D printing at the production frontier 

Bonnin-Roca et al. (2016) observe many potential uses for metals-based additive manufacturing (MAM) in 

commercial aviation. However, MAM is a relatively immature technology. The fabrication processes at the 

technological frontier have not yet been standardised, and aviation requires high quality and safety standards. 

The aviation sector would benefit if the mechanical properties of printed parts of any shape, using any 

given feedstock on any given MAM machine, could be accurately and consistently predicted. This would 

also help commercialise MAM technology. Government could help develop the necessary knowledge. 

Specifically, the public sector could support the basic science, particularly by funding and stewarding curated 

databases on materials’ properties. It could broker DSAs across users of MAM technology, government 

laboratories and academia. It could support the development of independent manufacturing and testing 

standards. And it could help quantify the advantages of adopting new technology by creating a platform 

documenting early users’ experiences. 
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Bonnin-Roca et al. (2016) suggest such policies for the United States, which leads globally in installed 

industrial 3D manufacturing systems and aerospace production. However, the same ideas could apply to 

other countries and industries. These ideas also illustrate how policy opportunities can arise from a specific 

understanding of emerging technologies and their potential uses. Indeed, governments should strive to 

develop expertise on emerging technologies in relevant public structures. Doing so will also help anticipate 

possible but hard-to-foresee needs for technology regulation. 

New materials and nanotechnology 

Scientists are studying materials in more detail than ever before. This is due to advances in scientific 

instrumentation, such as atomic-force microscopes, and developments in computational simulations. Today, 

materials with entirely novel properties are emerging. Solids have been created with densities comparable 

to the density of air, for example. Composites can be super-strong and lightweight. Some materials remember 

their shape, repair themselves or assemble themselves into components, while others can respond to light 

and sound (The Economist, 2015). 

The era of trial and error in material development is also ending. Powerful computer modelling and 

simulation of materials’ structure and properties can indicate how they might be used in products. Desired 

properties, such as conductivity and corrosion resistance, can be intentionally built into new materials. Better 

computation is leading to faster development of new and improved materials, more rapid insertion of 

materials into new products, and improved processes and products. In the near future, engineers will not 

only design products, but also the materials from which products are made (Teresko, 2008). Furthermore, 

large companies will increasingly compete in terms of materials development. For example, a manufacturer 

of automotive engines with a superior design could enjoy longer-term competitive advantage if it also 

owned the material from which the engine is built. 

Closely related to new materials, nanotechnology involves the ability to work with phenomena and processes 

occurring at a scale of 1 to 100 nanometres (nm) (a standard sheet of paper is about 100 000 nm thick). 

Control of materials on the nanoscale – working with their smallest functional units – is a general-purpose 

technology with applications across production (Friedrichs, 2017). Advanced nanomaterials are increasingly 

used in manufacturing high-tech products, e.g. to polish optical components. 

New materials and nanotechnology: Specific policies 

No single company or organisation will be able to own the entire array of technologies associated with 

materials innovation. Accordingly, a public-private investment model is warranted, particularly to build 

cyber-physical infrastructure and train the future workforce (McDowell, 2017). 

New materials will raise new policy issues and give renewed emphasis to a number of longstanding policy 

concerns. New digital security risks could arise. For example, a computationally assisted materials “pipeline” 

based on computer simulations could be hackable. Progress in new materials also requires effective policy 

in already important areas, often related to the science-industry interface. For example, well-designed 

policies are needed for open data and open science. Such policies could facilitate sharing or exchanges of 

modelling tools and experimental data, and simulations of materials’ structures, among other possibilities. 

Professional societies are developing a materials-information infrastructure to provide decision support to 

materials-discovery processes (Robinson and McMahon, 2016). This includes databases of materials’ 

behaviour, digital representations of materials’ microstructures and predicted structure-property relations, 

and associated data standards. International policy co-ordination is needed to harmonise and combine 

elements of cyber-physical infrastructure across a range of European, North American and Asian investments 

and capabilities. It is too costly (and unnecessary) to replicate resources that can be accessed through 

web services. A culture of data sharing – particularly pre-competitive data – is required (McDowell, 2017). 
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Sophisticated and expensive tools are also needed for research in nanotechnology. State-of-the-art 

equipment costs several million euros and often requires bespoke buildings. It is almost impossible to 

gather an all-encompassing nanotechnology research and development (R&D) infrastructure in a single 

institute, or even a single region. Consequently, nanotechnology requires inter-institutional and/or international 

collaboration to reach its full potential (Friedrichs, 2017). Publicly funded R&D programmes should allow 

involvement of academia and industry from other countries. They should also enable flexible collaborations 

between the most suitable partners. The Global Collaboration initiative under the European Union’s 

Horizon 2020 programme is an example of this approach. 

Support is needed for innovation and commercialisation in small companies. Nanotechnology R&D is mostly 

conducted by larger companies for three reasons. First, they have a critical mass of R&D and production. 

Second, they can acquire and operate expensive instrumentation. Third, they are better able to access 

and use external knowledge. Policy makers could improve access to equipment of small and medium-

sized enterprises (SMEs) by increasing the size of SME research grants; subsidising or waiving service 

fees; and/or providing SMEs with vouchers for equipment use. 

Regulatory uncertainties regarding risk assessment and approval of nanotechnology-enabled products must 

also be addressed, ideally through international collaboration. These uncertainties severely hamper the 

commercialisation of nano-technological innovation. Policies should support the development of transparent 

and timely guidelines for assessing the risk of nanotechnology-enabled products. At the same time, they 

should strive for international harmonisation in guidelines and enforcement. In addition, more needs to be 

done to properly treat nanotechnology-enabled products in the waste stream (Friedrichs, 2017). 

Selected cross-cutting policy issues 

This section addresses cross-cutting policies relevant to all the digital technologies described above. The 

issues examined are technology diffusion, connectivity and data, standards-setting processes, digital skills, 

access to and awareness of high-performance computing (HPC), IP systems and public support for R&D.  

Technology diffusion 

Most countries, regions and companies are primarily technology users, rather than technology producers. 

For them, technology diffusion and adoption should be priorities. Even in the most advanced economies 

diffusion can be slow or partial. For example, a survey of 4 500 German businesses in 2015 found that 

only 4% had implemented digitalised and networked production processes or planned to do so (ZEW-IKT, 

2015). Similarly, a survey of SME manufacturers in the United States in 2017 found that 77% had no plans 

to deploy the IoT (Sikich, 2017).  

Policies that broaden technology diffusion not only help to raise labour productivity growth, they might also 

lower inequality in rates of wage growth. Policy makers tend to acknowledge the critical importance of 

technology diffusion at a high level. However, they may overlook technology diffusion in the overall allocation 

of attention and resources (Shapira and Youtie, 2017). 

Certain features of new digital technologies could make diffusion more difficult. Potential technology users 

must often evaluate large and growing amounts of information on rapidly changing technologies and the 

skills and other inputs they require. Even the initial step of collecting sensor data can be daunting. A typical 

industrial plant, for example, might contain machinery of many vintages from different manufacturers. In 

turn, these could have control and automation systems from different vendors, all operating with different 

communication standards. And whereas many prior digital production technologies enhanced pre-existing 

processes, blockchain could entail a more challenging redesign of business models.  
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Diffusion in SMEs involves particular difficulties 

An important issue for diffusion-related institutions is that small firms tend to use key technologies less 

frequently than larger firms. In Europe, for example, 36% of surveyed companies with 50-249 employees 

use industrial robots, compared to 74% of companies with 1 000 or more employees (Fraunhofer, 2015). 

Only 16% of European SMEs share electronic supply-chain data, compared to 29% of large enterprises. 

This discrepant pattern of technology use directly reflects the availability of skills. For instance, only around 

15% of European SMEs employ information and communication technology (ICT) specialists, compared 

to 75% of large firms (EC, 2017) (Box 5.3).  

Box 5.3. Diffusing technology to SMEs: Some key considerations 

Various steps can be taken to help diffuse technology to SMEs, including the following: 

It is important to systematise key information for SMEs. A number of countries have developed tools to 

help SMEs transform technologically. Germany’s Industry 4.0 initiative has documented over 300 uses 

cases of applications of digital industrial technologies. It also includes contacts to experts (www.plattform-

i40.de). And the United Kingdom’s 2017 Mayfield Commission led to the creation of an online self-

assessment tool. It gives firms a benchmark against best practice, with guidelines on supporting actions 

(www.bethebusiness.com). Information provided through such initiatives also needs to encompass AI.  

Particularly useful is information on the expected return on investment (ROI) in new technologies, as 

well as information on essential complementary organisational and process changes. One international 

survey asked 430 professionals working across industry sectors what could help them implement 

intelligent business strategy in their organisation. More than half (56%) wanted more information linking 

initiatives to ROI (AI Intelligent Automation Network, 2018). But careful thinking and exposition of this 

information is needed. Ezell (2018) notes that an ROI may be hard to calculate when the technology 

frontier is expanding. ROIs for some AI projects may be particularly hard to determine a priori, in part 

because data cleaning – which involves an element of art – is key to the outcomes of most AI investments. 

Investment decisions may also have to include strategic considerations such as the need to remain 

viable in future supply chains. 

Because the skills to absorb information are scarce in many SMEs, simply providing information on 

technology is not enough. Providing signposts to reliable sources of SME-specific expertise can help. 

For example, as part of its SMEs Go Digital Programme, Singapore’s TechDepot provides a list of pre-

approved digital technology and service solutions suited to SMEs. Targeted skills development is also 

useful. For instance, Tooling U-SME – an American non-profit organisation owned by the Society of 

Manufacturing Engineers – provides online industrial manufacturing training and apprenticeships. 

Test beds can also provide SMEs with facilities to test varieties and novel combinations of digital and 

other equipment. In this way, they can de-risk prospective investments. 

Diffusion requires conditions to support the creation of growth-oriented start-ups  

and efficient allocation of economic resources  

By ensuring conditions such as timely bankruptcy procedures and strong enforcement of contracts, 

governments can support the creation of businesses. Increasing new-firm entry and growth is important 

for diffusion. OECD research has highlighted the role of new and young firms in net job creation and radical 

innovation. Unconstrained by legacy systems, start-ups often introduce forms of organisation that new 

technologies require. Electric dynamos, for example, were first commercialised in the mid-1890s during the 

second industrial revolution. It took almost four decades, and a wave of start-up and investment activity in 

the 1920s, before suitably reorganised factories became widespread and productivity climbed (David, 1990).  

http://www.bethebusiness.com/
https://en.wikipedia.org/wiki/SME_(society)
https://en.wikipedia.org/wiki/SME_(society)
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Recent OECD analysis of micro-economic allocation processes highlights the importance for leading-edge 

production of conducive economic and regulatory framework conditions. These conditions include competitive 

product markets and flexible labour markets. Low costs for starting and closing a business are also 

important. Furthermore, openness to foreign direct investment and trade provides a vehicle for technology 

diffusion and an incentive for technology adoption. Such conditions all facilitate efficient resource allocation. 

Efficient resource allocation helps incumbent firms and start-ups adopt new technologies and grow. 

Andrews, Criscuolo and Gal (2016) estimate that more liberal markets, especially in services, could avoid 

up to half of the difference in multi-factor productivity between “frontier” and “laggard” firms, and accelerate 

diffusion of new organisational models.   

Several additional factors can aid diffusion. These include openness to internationally mobile skilled labour, 

and the strength of knowledge exchange within national economies. A key such exchange is the interaction 

between scientific institutions and businesses. 

Institutions for diffusion can also be effective if well designed 

In addition to enabling framework conditions, effective institutions for technology diffusion are also important. 

Innovation systems invariably contain multiple sources of technology diffusion, such as universities and 

professional societies. Shapira and Youtie (2017) provide a typology of diffusion institutions. It ranges from 

applied technology centres (e.g. the Fraunhofer Institutes in Germany) to open technology mechanisms 

(e.g. the Bio-Bricks Registry of Standard Biological Parts). Some institutions involved, such as technical 

extension services, tend to receive low priority in the standard set of innovation support measures. But 

they can be effective if well designed. For example, the United States’ Manufacturing Extension Partnership 

has recently been estimated to return USD 14.5 per dollar of federal funding. 

New diffusion initiatives are emerging, some of which are still experimental. For instance, alongside established 

applied technology centres, such as the Fraunhofer Institutes, partnership-based approaches are increasing. 

An example is the US National Network for Manufacturing Innovation (NNMI). The NNMI uses private non-

profit organisations as the hub of a network of company and university organisations to develop standards 

and prototypes in areas such as 3D printing and digital manufacturing and design. 

Technology diffusion institutions need realistic goals and time horizons  

Upgrading the ability of manufacturing communities to absorb new production technologies takes time. 

More effective diffusion is likely when technology diffusion institutions are empowered and resourced to take 

longer-term perspectives. Similarly, evaluation metrics should emphasise longer-run capability development 

rather than incremental outcomes and revenue generation.  

Introducing new ways to diffuse technology takes experimentation. Yet many governments want quick  

and riskless results. Policy making needs better evaluation evidence and a readiness to experiment with 

organisational designs and practices. Concerns over governmental accountability combined with ongoing 

public austerity in many economies could mean that institutions will be reluctant to risk change, slowing 

the emergence of next-generation institutions for technology diffusion (Shapira and Youtie, 2017). 

Policies on connectivity and data 

Broadband networks are essential to Industry 4.0. They reduce the cost of accessing information and 

expand the means for sharing data and knowledge. In this way, they help develop new goods, services 

and business models and facilitate research. Policy priorities in this area include furthering access to high-

speed broadband networks, including in rural and remote areas, and overhauling laws governing the speed 

and coverage of communication services (OECD, 2017b). Fibre-optic cable is of particular importance for 

Industry 4.0 (Box 5.4). 
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Policies to promote competition and private investment, as well as independent and evidence-based regulation, 

have helped to extend coverage. When market forces cannot fulfil all policy objectives, governments can 

respond with a series of tools. These could include competitive public tenders for infrastructure deployment, 

legal obligations on operators, and subsidies for national and municipal broadband networks.  

Other measures include fostering open access arrangements and initiatives to reduce deployment costs. 

“Dig once” practices, for example, mandate installation of fibre conduits in publicly funded road projects 

(OECD, 2018b). Technological developments are also likely to expand opportunities for providing services 

in underserved areas. For example, broadband could be delivered through “White Spaces”, the gaps in 

radio spectrum between digital terrestrial television channels. 

Box 5.4. The importance of fibre-optic cable for Industry 4.0 

Fibre-optic connectivity is important for Industry 4.0, and has numerous advantages over copper-cable 

based Internet. Fibre-optic cable provides faster speed, with a current upper range of 100 gigabytes per 

second. It provides faster access to cloud-hosted information, along with greater reliability, signal strength 

and bandwidth. Its lower latency is important for many digitally controlled machines, for collaboration 

among employees and for accommodating new technologies such as haptics (which remotely replicate 

a sense of touch). It improves security because the signal is lost during breaches of fibre-optic cable. It 

resists interference, stemming, for example, from proximity to machinery. Moreover, 5G networks rely 

on fibre connectivity. 

Enhancing trust in digital services is critical to data sharing and the uptake of broadband. Industry 4.0 also 

creates risks that could erode the perceived benefits of digital technologies. While challenging to measure, 

digital security incidents appear to be increasing in terms of sophistication, frequency and influence 

(OECD, 2017b). In one 2014 incident, hackers breached the office computers of a German steel mill and 

overrode the shut-off mechanisms on the steel mill’s blast furnace (Long, 2018).  

Such incidents affect firms’ reputations and competitiveness. They also impose significant costs on the 

economy as a whole, restricting ICT adoption and business opportunities. New digital security solutions 

are emerging. In homomorphic encryption, for example, data are always encrypted, even when being 

computed on in the cloud. But the technological race between hackers and their targets is continuous. And 

SMEs, in particular, need to introduce or improve their digital security risk management practices.  

Restricting cross-border data flows should be avoided 

Research is beginning to show that restricting data flows can lead to lost trade and investment opportunities, 

higher costs of cloud and other information technology services, and lower economic productivity and gross 

domestic product growth (Cory, 2017). Manufacturing creates more data than any other sector of the 

economy. Cross-border data flows are expected to grow faster than growth in world trade. Restricting such 

flows, or making them more expensive, for instance by obliging companies to process customer data locally, 

can raise firms’ costs and increase the complexity of doing business, especially for SMEs.   

A prospective policy issue: Legal data portability rights for firms? 

In April 2016, the European Union’s General Data Protection Regulation established the right to portability 

for personal data. A number of companies, such as Siemens and GE, are vying for leadership in online 

platforms for the IoT. As digitalisation proceeds, such platforms will become increasingly important repositories 

of business data. If companies had portability rights for non-personal data, competition among platforms 

could grow, and switching costs for firms could fall. 

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
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A prospective policy issue: Frameworks to protect non-personal sensor data 

The protection of machine-generated data is likely to become a growing issue as Industry 4.0 advances. 

This is because sensors are becoming ubiquitous, more capable, increasingly linked to embedded computation, 

and used to stream large volumes of often critical machine data. Single machines may contain multiple 

component parts made by different manufacturers, each equipped with sensors that capture, compute and 

transmit data. These developments raise legal and regulatory questions. For instance, are special provisions 

needed to protect data in value chains from third parties? Which legal entities should have ownership rights 

of machine-generated data under what conditions? And, what rights to ownership of valuable data should 

exist in cases of business insolvency?  

Increasing trust in cloud computing 

Cloud computing is another technology where policy might be needed. Cloud use can bring efficiency gains 

for firms. And Industry 4.0 will require increased data sharing across sites and company boundaries.6 

Consequently, machine data and data analytics and even monitoring and control systems will increasingly 

be situated in the cloud. The cloud will also enable independent AI projects to start small, and scale up 

and down as required. Indeed, Google’s Chief AI scientist, Fei-Fei Li, recently argued that cloud computing 

will democratise AI.7 

Governments can act to increase trust in the cloud and stimulate cloud adoption. The use of cloud computing 

in manufacturing varies greatly across OECD countries. In Finland, 69% of manufacturers use the cloud, 

for example, compared to around 15% in Germany. Firms in countries where cloud use is low often cite 

fears over data security and uncertainty about placing data in extra-territorial servers. However, cloud use 

can bring increased data security, especially for SMEs. For example, Amazon Web Services, a market 

leader, reportedly provides more than 1 800 security controls. This affords a level of data security beyond 

what most firms could themselves provide. Government could take steps, for example, to help SMEs better 

understand the technical and legal implications of cloud service contracts. This could include providing 

information on the scope and content of certification schemes relevant for cloud computing customers. 

Developing digital skills 

Digital technologies create new skills needs. Occupational titles like “industrial data scientist”, and “bioinformatics 

scientists” are recent, reflecting technology-driven changes in skills demand. Individuals need the necessary 

basic skills to adopt new digital technologies. The lack of generic analytic skills and advanced skills is 

hindering technology adoption. For instance, surveys show that a shortage of skilled data specialists is a 

main impediment to the use of data analytics in business (OECD, 2017b).  

Concern is widespread regarding possible labour market disruptions from automation driven by digital 

technology. Data from the OECD Programme for International Assessment of Adult Competencies highlight 

a lack of ICT skills in low-skilled adult populations in semi-skilled occupations. This means this demographic 

group is at high risk of losing jobs to automation.  

Forecasting skills needs is hazardous. Just a few years ago, few would have foreseen that smartphones 

would disrupt, and in some cases end, a wide variety of products and industries, from notebook computers 

and personal organisers to niche industries making musical metronomes and hand-held magnifying glasses 

(functions now available through mobile applications).  

Because foresight is imperfect, governments must establish systems that draw on the collective information 

and understanding available regarding emerging needs for skills. In that regard, businesses, trade unions, 

educational institutions and learners can all contribute. Students, parents and employers must have access 

to information with which to judge how well educational institutions perform and assess the career paths 

of graduates of different programmes. In turn, educational and training systems must be organised such 

that resources flow efficiently to courses and institutions that best cater to the demand for skills. Institutions 
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like Sweden’s job security councils, or the SkillsFutureSingapore agency, play such roles (Atkinson, 2018). 

And business and government must work together to design training schemes, with public authorities 

ensuring the reliability of training certification. 

How learning is delivered matters greatly 

Policies for improving skills for Industry 4.0 typically include fostering ICT literacy in school curricula. This 

literacy ranges from use of basic productivity software such as word processing programmes and spreadsheets, 

to coding and even digital security courses. Throughout formal education, more multidisciplinary programmes 

and greater curricular flexibility are often required. For instance, students should be able to select a component 

on mechanical engineering and combine this with data science, bio-based manufacturing, or other disciplines. 

In a comprehensive review of science, technology, engineering and mathematics (STEM) education, Atkinson 

and Mayo (2010) identify a series of priorities. These emphasise helping students follow their interests and 

passions; respecting the desire of younger students to be active learners; and giving greater opportunity to 

explore a wide variety of STEM subjects in depth. Equally important are increasing the use of online, video-

game and project-based learning, and creating options to take tertiary-level STEM courses at secondary level. 

Japan’s Kosen schools have proven the efficacy of many of these ideas since the early 1960s (Schleicher, 2018). 

Many governments are implementing forward-looking programmes to match ICT training priorities with 

expected skills needs. In Belgium, for example, the government carries out prospective studies on the expected 

impact of the digital transformation on occupations and skills in a wide variety of fields. The results are 

then used to select training courses to be reinforced for emerging and future jobs (OECD, 2017b). Estonia 

and Costa Rica have also changed school curricula based on where they estimate jobs will be in the future. 

Lifelong learning must be an integral part of work 

Advancing automation and the birth of new technologies also mean that lifelong learning must be an 

integral part of work. Each year, inflows to the labour force from initial education represent only a small 

percentage of the numbers in work, who in turn will bear much of the cost of adjustment to new 

technologies. Both considerations underscore the importance of widespread lifelong learning. Disruptive 

changes in production technology highlight the importance of strong and widespread generic skills, such 

as literacy, numeracy and problem solving. These foundation skills are the basis for subsequent acquisition 

of technical skills, whatever they turn out to be. In collaboration with social partners, governments can help 

spur development of new training programmes, such as conversion courses in AI for those already in work. 

Digital technology will itself affect how skills are developed  

Digital technology is creating opportunities to develop skills in novel ways. For example, in 2014, Professor 

Ashok Joel, and graduate students, at Georgia Tech University, created an AI teaching assistant – Jill 

Watson – to respond to online student questions. For months students were unaware that the responses 

were non-human (Korn, 2016). iTalk2Learn is a European Union project to develop an open-source 

intelligent mathematics tutoring platform for primary schools. Closer to the workplace, researchers at 

Stanford University are developing systems to train crowdworkers using machine-curated material 

generated by other crowdworkers. And Upskill (www.upskill.io) provides wearable technology to connect 

workers to the information, equipment, processes and people they need in order to work more efficiently. 

Among other potential benefits, in a world where lifelong learning will be essential, AI could help learners 

understand the idiosyncrasies of how they learn best. 

Participation in standards-setting processes 

Advanced production operates in a vast matrix of technical standards. The semiconductor industry, for example, 

uses over 1 000 standards (Tassey, 2014). Standards development relevant to Industry 4.0 is underway 

http://www.upskill.io/
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in many fields. These range from machine-to-machine communication and data transmission to 5G (a global 

standard for which is expected by 2019), robotics and digital identifiers for objects. Over 100 standards 

initiatives exist today for the IoT and Industry 4.0 (Ezell, 2018).  

Countries and firms that play primary roles in setting international standards can enjoy advantages if new 

standards align with their own national standards and/or features of their productive base. The public 

sector’s role should be to encourage industry, including firms of different sizes, to participate at early stages 

in international (and in some cases national) standards setting. Dedicated support could be given to include 

under-represented groups of firms in processes to develop standards. 

The development of AI standards – particularly technical standards – is at a very early stage so far. Most 

national AI strategies refer to the development of AI ethics standards. But this oversight dimension of 

standards, around ethics and corporate governance, also needs technical standards (a term like “algorithmic 

transparency” doesn’t yet have a technical definition). The timing of standards setting – too soon or too 

late – is always an issue raised when assessing how standards affect innovation. In the past, often, just a 

few main players negotiated standards. But now there are large numbers of developers working on Open 

Source projects that will also find standards solutions. In some areas of AI, who defines a standard first 

may be less important than with previous technologies. 

Improving access to high-performance computing   

HPC is increasingly important for firms in industries ranging from construction and pharmaceuticals to the 

automotive sector and aerospace. Airbus, for instance, owns 3 of the world’s 500 fastest supercomputers. 

Two-thirds of US-based companies that use HPC say that: “increasing performance of computational 

models is a matter of competitive survival” (US Council on Competitiveness, 2014). How HPC is used in 

manufacturing is also expanding, going beyond applications such as design and simulation to include real-

time control of complex production processes. Financial rates of return to HPC use are high. By one estimate, 

each EUR 1 invested generates, on average, EUR 69 in profits (EC, 2016). A 2016 review observed that  

“(m)aking HPC accessible to all manufacturers in a country can be a tremendous differentiator, and no nation 
has cracked the puzzle yet” (Ezell and Atkinson, 2016). 

 

Box 5.5. Getting supercomputing to industry: Possible policy actions 

 Raise awareness of industrial use cases, with quantification of their costs and benefits.  

 Develop a one-stop source of HPC services and advice for SMEs and other industrial users. 

 Provide low-cost, or free, limited experimental use of HPC for SMEs, with a view to demonstrating 

the technical and commercial implications of the technology. 

 Establish online software libraries or clearing houses to help disseminate innovative HPC software 

to a wider industrial base. 

 Give incentives for HPC centres with long industrial experience, such as the Hartree Centre in 

the United Kingdom, or TERATEC in France, to advise centres with less experience.  

 Modify eligibility criteria for HPC projects, which typically focus on peer review of scientific 

excellence, to include criteria of commercial impact.  

 Engage academia and industry in the co-design of new hardware and software, as has been 

done in European projects such as Mont Blanc (Mont Blanc, n.d.).  

 Include HPC in university science and engineering curricula. 

 Explore opportunities for co-ordinating the purchase of commercially provided computing capacity. 
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As Industry 4.0 becomes more widespread, demand for HPC will rise. But like other digital technologies, 

the use of HPC in manufacturing falls short of potential. One estimate is that 8% of US firms with fewer 

than 100 employees use HPC. However, half of manufacturing SMEs could use HPC (for prototyping, 

testing and design) (Ezell and Atkinson, 2016). Public HPC initiatives often focus on the computation needs 

of “big science”. Greater outreach to industry, especially SMEs, is frequently needed. Ways forward – a 

number of which are described in EC (2016) – are set out in Box 5.5. 

Even developing countries may be advised to have a backbone network of high-performance computers. 

Initially, a low-income economy may have few sophisticated industrial uses for HPC. However, high-

performance computers can find initial applications in research and science, and then later be applied in 

industry. Cloud-based supercomputing cannot meet all supercomputing needs. This is only viable when 

applications are needed occasionally. If industry or scientific applications are regular or continuous, then 

a cloud-based service may be too expensive.  

Intellectual property systems 

Digital technologies are raising new challenges for IP systems. 3D printing, for example, might create 

complications in connection with patent eligibility. For instance, if 3D printed human tissue improves upon 

natural human tissue, it may be eligible for patenting, even though naturally occurring human tissue is not. 

More fundamentally, new patenting frameworks may be needed in a world where machines have the ability 

to invent. AI systems have already created patentable inventions (OECD, 2017a).  

AI raises many complex challenges for IP systems, such as identifying infringements of patent laws. These 

laws will be complicated by AI systems that automatically – and unpredictably – learn from many publicly 

available sources of information (Yanisky-Ravid and Liu, 2017). An overarching policy challenge is to 

balance the needs around IP. On the one hand, IP is necessary for incentivising certain types of innovation. 

On the other, it should not hamper diffusion of technologies such as AI and 3D printing. 

Public support for R&D  

The complexity of many emerging production technologies exceeds the research capacities of even the 

largest firms. In such cases public-private research partnerships may be needed. Microelectronics, new 

materials and nanotechnology, among others, have arisen because of advances in scientific knowledge 

and instrumentation. Publicly financed basic research has often been critical. For decades, for example, 

public funding supported progress in AI, including during unproductive periods of research, to the point 

where AI today attracts huge private investment (National Research Council, 1999). Recent declines in 

public support for research in some major economies is a concern. 

Many possible targets exist for government R&D and commercialisation efforts. As discussed below, these 

range from quantum computing (Box 5.6), to advancing AI.  

An overarching research challenge relates to computation itself 

Processing speeds, memory capacities, sensor density and accuracy of many digital devices are linked to 

Moore’s Law. This asserts that the number of transistors on a microchip doubles about every two years 

(Investopedia, n.d.). However, atomic-level phenomena and rising costs constrain further shrinkage of 

transistors on integrated circuits.  

Many experts believe a limit to miniaturisation will soon be reached. At the same time, applications of digital 

technologies across the economy rely on increasing computing power. For example, the computing power 

needed for the largest AI experiments is doubling every three-and-a-half months (OpenAI, 16 May 2018). 

By one estimate, this trend can be sustained for at most three-and-a-half to ten years, even assuming 

public R&D commitments on a scale similar to the Apollo or Manhattan projects (Carey, 10 July 2018).  
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Much, therefore, depends on achieving superior computing performance (including in terms of energy 

requirements). Many hope that significant advances in computing will stem from research breakthroughs 

in optical computing (using photons instead of electrons), biological computing (using DNA to store data 

and calculate) and/or quantum computing (Box 5.6). 

Box 5.6. A new computing regime: The race for quantum computing 

Quantum computers function by exploiting the laws of subatomic physics. A conventional transistor flips 

between on and off, representing 1s and 0s. However, a quantum computer uses quantum bits (qubits), 

which can be in a state of 0, 1 or any probabilistic combination of both 0 and 1 (for instance, 0 with 20% 

and 1 with 80% probability). At the same time, qubits interact with other qubits through so-called quantum 

entanglement (which Einstein termed “spooky action at a distance”). 

Fully developed quantum computers, featuring many qubits, could revolutionise certain types of computing. 

Many of the problems best addressed by quantum computers, such as complex optimisation and vast 

simulation, have major economic implications. For example, at the 2018 CogX Conference, Dr Julie 

Love, Microsoft’s director of quantum computing, described how simulating all the chemical properties 

of the main molecule involved in fixing nitrogen – nitrogenase – would take today’s supercomputers 

billions of years. Yet this simulation could be performed in hours with quantum technology. The results 

of such a simulation would directly inform the challenge of raising global agricultural productivity and 

limiting today’s reliance on the highly energy-intensive production of nitrogen-based fertiliser. Rigetti 

Computing has also demonstrated that quantum computers can train ML algorithms to a higher accuracy, 

using fewer data than with conventional computing (Zeng, 22 February 2018). 

Until recently, quantum technology has mostly been a theoretical possibility. However, Google, IBM and 

others are beginning to trial practical applications with a small number of qubits (Gambetta, Chow and 

Teffen, 2017). For example, IBM Quantum Experience (IBM, n.d.) offers free online quantum computing. 

However, no quantum device currently approaches the performance of conventional computers. 

By one estimate, fewer than 100 people globally possess the skills to write algorithms specifically for 

quantum computers. Azhar (2018) calculates that companies involved in any aspect of quantum computing 

employ fewer than 2 000 people globally. Skill constraints may be lessened by Google’s release of Cirq. 

This software toolkit allows developers without specialised knowledge of quantum physics to create 

algorithms for quantum machines (Giles, 2018a). Zapata Computing, a start-up, aims to offer a range 

of ready-made software that firms can use on quantum computers (Giles, 2018b). 

The further development of robust, scalable quantum computing involves major research and engineering 

challenges. Global annual public investment in quantum computing could range from EUR 1.5 billion to 

EUR 1.9 billion. While relatively small, venture capital funding is growing, led by D-Wave (USD 175 million), 

Rigetti (USD 70 million), Cambridge Quantum Computing (USD 50 million) and IonQ (USD 20 million) 

(Azhar, 2018). The People’s Republic of China is scheduled to open a National Laboratory for Quantum 

Information Sciences in 2020, with a projected investment of USD 10 billion. Chinese scientists are 

making major research advances. In July 2018, for instance, they broke a record for the number of 

qubits linked to one another through quantum entanglement (Letzer, 2018). 

A need for more – and possibly different – research on AI 

Public research funding has been key to progress in AI since the origin of the field. The National Research 

Council (1999) shows that while the concept of AI originated in the private sector – in close collaboration 

with academia – its growth largely results from many decades of public investments. Global centres of AI 

research excellence (e.g. at Stanford, Carnegie Mellon and the Massachusetts Institute of Technology) 

https://www.livescience.com/28550-how-quantum-entanglement-works-infographic.html
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arose because of public support, often linked to US Department of Defense funding. However, recent 

successes in AI have propelled growth in private sector R&D for AI. For example, earnings reports indicate 

that Google, Amazon, Apple, Facebook and Microsoft spent a combined USD 60 billion on R&D in 2017, 

including an important share on AI. By comparison, total US federal government R&D for non-defence 

industrial production and technology amounted to around USD 760 million in 2017 (OECD, 2019). 

Many in business, government and among the public believe AI stands at an inflection point, ready to 

achieve major improvements in capability. However, some experts emphasise the scale and difficulties of 

the outstanding research challenges. Some AI research breakthroughs could be particularly important for 

society, the economy and public policy. However, corporate and public research goals might not fully align. 

Jordan (2018) notes that much AI research is not directly relevant to the major challenges of building safe 

intelligent infrastructures, such as medical or transport systems. He observes that unlike human-imitative 

AI, such critical systems must have the ability to deal with:  

“…distributed repositories of knowledge that are rapidly changing and are likely to be globally incoherent. Such 
systems must cope with cloud-edge interactions in making timely, distributed decisions and they must deal with 
long-tail phenomena whereby there is (sic) lots of data on some individuals and little data on most individuals. 
They must address the difficulties of sharing data across administrative and competitive boundaries.” (Jordan, 2018) 

Other outstanding research challenges relevant to public policy relate to making AI explainable; making AI 

systems robust (image-recognition systems can easily be misled, for instance); determining how much 

prior knowledge will be needed for AI to perform difficult tasks (Marcus, 2018); bringing abstract and higher-

order reasoning, and “common sense”, into AI systems; and inferring and representing causality. Jordan 

(2018) also identifies the need to develop computationally tractable representations of uncertainty. No 

reliable basis exists for judging when – or whether – research breakthroughs will occur. Indeed, past 

predictions of timelines in the development of AI have been extremely inaccurate. 

Research and industry can often be linked more effectively 

Government-funded research institutions and programmes should be free to combine the right partners 

and facilities to address challenges of scale-up and interdisciplinarity. Investments are often essential in 

applied research centres and pilot production facilities to take innovations from the laboratory into production. 

Demonstration facilities such as test beds, pilot lines and factory demonstrators are also needed. These 

should provide dedicated research environments with the right mix of enabling technologies and the technicians 

to operate them. Some manufacturing R&D challenges may need expertise from manufacturing engineers 

and industrial researchers, as well as designers, equipment suppliers, shop-floor technicians and users 

(O’Sullivan and López-Gómez, 2017). 

More effective research institutions and programmes in advanced production may also need new evaluation 

indicators. These would go beyond traditional metrics such as numbers of publications and patents. Additional 

indicators might also assess such criteria as successful pilot line and test-bed demonstration, training of 

technicians and engineers, consortia membership, the incorporation of SMEs in supply chains and the role 

of research in attracting FDI.  

Conclusion 

New digital technologies are key to the next production revolution. Realising their full potential requires 

effective policy in wide-ranging fields, including skills, technology diffusion, data, digital infrastructure, research 

partnerships, standards and IPRs. Typically, these diverse policy fields are not closely connected in government 

structures and processes. Governments must also adopt long-term time horizons, for instance, in pursuing 

research agendas with possible long-term payoffs. Public institutions must also possess specific understanding 

of many fast-evolving digital technologies. One leading authority argues that converging developments in 
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several technologies are about to yield a “Cambrian explosion” in robot diversity and use (Pratt, 2015). 

Adopting Industry 4.0 poses challenges for firms, particularly small ones. It also challenges governments’ 

ability to act with foresight and technical knowledge across multiple policy domains. 
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Notes

1 Deep learning with artificial neural networks is a technique in the broader field of machine learning (ML) 

that seeks to emulate how human beings acquire certain types of knowledge. The word “deep” refers to 

the numerous layers of data processing. The term “artificial neural network” refers to hardware and/or 

software modelled on the functioning of neurons in a human brain. 

2 AI will, of course, have many economic and social impacts. In relation to labour markets alone, intense debates 

exist on AI’s possible effects on labour displacement, income distribution, skills demand and occupational 

change. However, these and other considerations are not a focus of this chapter.  

3 In the development of improved forms of AI, increased data availability has been critical. Over the past 

30 years, the length of time between data creation and the most publicised AI breakthroughs has been much 

shorter than between algorithmic progress and the same breakthroughs (Wissner-Gross, 2016). Using a 

variant of an algorithm developed 25 years earlier, for example, Google’s GoogLeNet software achieved 

near-human level object classification in 2014. But the software was trained on ImageNet, a huge corpus 

of labelled images and object categories that had become available just four years earlier (at its peak, 

ImageNet reportedly employed close to 50 000 people in 167 countries, who sorted around 14 million images 

[House of Lords, 2018]). 

4 Many tools that firms employ to manage and use AI exist as free software in open source (i.e. their source 

code is public and modifiable). These include software libraries such as TensorFlow and Keras, and tools 

that facilitate coding such as GitHub, text editors like Atom and Nano, and development environments like 

Anaconda and RStudio. Machine learning-as-a-service platforms also exist, such as Michelangelo – Uber’s 

internal system that helps teams build, deploy and operate ML solutions. 

5 An example of a data exchange is datacollaboratives.org. 

6 For example, Ezell (2018) reports that “BMW has set a goal of knowing the real-time status of all major 

production equipment at each company that produces key components for each of its vehicles”.  

7 See Professor Li’s full remarks at the 2017 Global StartupGrind Conference: 

https://www.startupgrind.com/blog/cloud-will-democratize-ai/. 
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Chapter 6 focuses on digitalisation and the bio-based industries that are 

starting to make impacts in the chemicals and materials sectors. As a result 

of next-generation genome sequencing, biology and biotechnology have 

become data-rich. Developing bioprocesses has often been hampered at 

the biological stage – the efficiency of the production strain or biocatalyst. 

The new discipline of synthetic biology or engineering biology is ushering in 

an era of more precise control of construction of DNA parts, genes, and all 

the way to production strains. Engineering biology needs digitalisation and 

vice versa. The bioeconomy is wider than biotechnology, however. There 

are many other ways that converging technologies and digitalisation can be 

applicable to the bioeconomy.  

  

6 Digitalisation in the bioeconomy: 

Convergence for the bio-based 

industries 
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Introduction 

In essence, the bioeconomy is about using renewable feedstocks to produce everyday goods and services. 

The bioeconomy concept has expanded well beyond the boundaries set in the OECD (2009) publication 

The Bioeconomy to 2030: Designing a policy agenda. It now encompasses a wide range of sectors and 

activities including chemicals, food, agriculture, dairy, forestry, pulp and paper, waste management and others. 

The bioeconomy is not just concerned with biotechnology. It is now seen as a new means of production 

that will gradually replace fossil-based production and be consistent with the concept of a circular economy 

(Philp and Winickoff, 2018).  

Synthetic biology is an interdisciplinary field that aims to design and make biological parts and systems. It 

has to become an engineering discipline to take its place in future advanced manufacturing. If synthetic 

biology goes beyond the domain of science, many of the potential impacts linked to successful manufacturing 

will be achieved.  

There is optimism in the future of synthetic biology. Biology has gone from being a data-poor discipline to 

being data-rich, which makes biology amenable to much greater computational analysis. And where there 

are algorithms, there is the possibility for automation. Automation brings faster “design-build-test” cycles, 

which will go a long way to conquering two of the long-term challenges of biotechnology, namely the lack 

of reproducibility and reliability. 

The whole bioeconomy business cycle is ripe for digitalisation. This includes extraction and procurement 

of materials, as well as logistics and distribution of intermediate goods. It also comprises the retail of final 

products to consumers, including, as envisioned in a circular economy, the reuse, repair and recycling of 

products and materials.  

At the heart of the bioeconomy’s future is the need for a different kind of workforce with multi- and 

interdisciplinary skills. Among several other key attributes, professionals in future bio-based industries will 

need to be much more familiar with digital skills such as programming and data science. This chapter 

illustrates there is still much to do, even in educating a future “biomechatronics-ready” workforce to drive 

this far-reaching but still-to-be-achieved manufacturing sector. 

The great convergence 

This section is concerned with examples of how digitalisation and biotechnology can work together. Together, 

they can provide solutions to major bioeconomy policy goals that could not be tackled by either alone. This can 

be seen as a form of convergence, which OECD defines as the coming together of different technologies 

to solve problems that cannot be addressed by a single technology.  

The combination of digital and biological transformation may greatly change the design and handling of 

production processes and their products. A workshop of the Global Bioeconomy Summit of 2018 in Berlin 

was entitled “The great convergence: Digitalisation, biologicalisation and the future of manufacturing”. It 

described how “bio-intelligent value adding” could be disruptive in future manufacturing.  

While this form of convergence is usually considered a future potential, a form of convergence of special 

interest to the bioeconomy is already functioning. This is the mix of industrial biotechnology with green 

chemistry (Philp, Ritchie and Allan, 2013). This chapter addresses some aspects of this convergence and 

provides examples.  

Why is convergence necessary? 

This subsection explores the need for convergence. Box 6.1 summarises the challenges and policies 

needed to bring synthetic or engineering biology into advanced manufacturing. Convergence is becoming 

a necessity for business survival. Sean Ward, Chief Technology Officer of Synthace in the United Kingdom 
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has said, “As working with the physical world is becoming increasingly digital, every company that is out 

there is discovering that they either are a technology business or they are dead. And that is what is 

happening with biology: it is becoming a technology business” (Quaglia, 20 February 2017). 

Throughout the history of biology, experimentation has been difficult due to a scarcity of data. That situation 

has changed dramatically this century as technological improvements in experimental high-throughput 

(HT) measurement have made biology data-rich. This has created a need for tools to facilitate the analysis 

and interpretation of biological data (Fong, 2014). In the data-rich age, predictive design and rapid 

evaluation are at the core of any engineering (synthetic) biology approach. These accompany assembly 

of new materials through laboratory automation, HT characterisation and post-production processing. 

In the earliest years of bio-based production, it took 50-300 person years and many millions of dollars to 

bring a metabolically engineered product to market (Hong and Nielsen, 2012; Carlson, 2018). Even recently, 

it took on average over seven years to launch a bio-based product (Il Bioeconomista, 10 June 2015). The 

earliest commercial successes of such products were achieved without the full advantages of rich data. If 

a deluge of metabolically engineered microorganisms producing bio-based chemicals was subsequently 

expected, then that deluge has not arrived. Follow-on commercial successes have been few (e.g. Van Dien, 

2013). Some progress has been made, however. For example, commercial scale production of 1,4-BDO 

(an organic compound) was performed less than five years after the first detectable amount of BDO was 

produced in an engineered E. coli strain (Burgard et al., 2016).  

Box 6.1. Concepts to unite manufacturing and materials-discovery communities  
to harness opportunities emerging from synthetic biology 

The unifying concepts are:  

 platform technologies to support the delivery of synthetic biological materials  

 a highly trained interdisciplinary workforce 

 academic/industry/government co-development that can implement and innovate these technologies  

 standardisation and interoperability of biological parts for new materials  

 sustainable materials manufacturing and management  

 a common language and vision that places synthetic biology at the nexus of other disciplines, 

especially materials science, chemistry, computer science and engineering. 

Source: Le Feuvre and Scrutton (2018), “A living foundry for synthetic biological materials: A synthetic biology roadmap to new advanced materials”. 

Overarching view: Greater integration of biotechnology with the engineering 

design cycle  

At a fundamental level, most biotechnology as yet fails to meet some of the specific criteria of engineering. 

Essential differences between the scientific method (test a hypothesis through experimentation) and engineering 

design (design a solution to a problem and test the outcome) must be addressed. Concepts such as 

interoperability, separation of design from manufacture, standardisation of parts and systems, all of which are 

central to engineering disciplines, have been largely absent from biotechnology (OECD, 2014). Therefore, 

weaknesses can be expected at the level of the engineering cycle, depicted in a generic way in Figure 6.1. 

Many variants on the engineering cycle exist, but Figure 6.1 shows the basic elements through phases of 

initial design, building and testing of a part/system/device. No one expects an optimal design on the first 

attempt. Thereafter, the process is iterated as often as is necessary to meet the engineering specifications. 
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Figure 6.1. The engineering design cycle 

 

Source: Kitney et al. (2019), “Enabling the advanced bioeconomy through public policy supporting biofoundries and engineering biology”, 

https://www.cell.com/trends/biotechnology/pdf/S0167-7799(19)30076-9.pdf. 

The test phase is the current bottleneck  

Within the engineering design cycle, the test phase is the primary bottleneck – a challenge that will only 

be solved through biology and automation of the iterative processes. Evaluation of an organism’s phenotype 

– its observable physical properties – is a major rate-limiting step in metabolic engineering (Wang, 2014). 

When constructing production strains for biofuels or bio-based chemicals, design success will be measured 

by the amount of product formed. This may require separation of individual strains and determination of 

the concentration of the chemical of interest produced by each. If so, the process of multiplexing (bringing 

many input streams into one) in design and build has been defeated. In effect, this results in demultiplexing 

(breaking one input stream into many) (Rogers and Church, 2016).  

This is where an important bottleneck remains – orders of magnitude fewer constructs can be tested than 

can be designed and built. The throughput is limited to hundreds of thousands of design evaluations per 

day. Improving this throughput by mechanical or electronic automation will be limited as the orders of 

magnitude of improvement needed are so high. The needed advances must come from biology itself 

(e.g. Rogers et al., 2015; Xiao et al., 2016), but are ultimately linked to automation of the iterative processes. 

An integrated technology platform could unlock the potential 

Integrating engineering design with biotechnology could unlock commercial potential, especially when 

combined with digitalisation and automation. 

Genomatica, an American company, is a leader in producing bio-based chemicals from metabolically engineered 

strains. In its view, the key to removing bottlenecks is: “an integrated technology platform encompassing 

metabolic modelling, HT pathway and strain construction, quantitative small-scale screening, and systems 

biology, all of which are intimately linked to fermentation and process engineering” (Burgard et al., 2016).  
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This agrees with the view of Lee and Kim (2015). They believe one reason the process is so challenging 

is “that researchers often fail to consider a fully integrated industrial bioprocess when developing microbial 

strains with new activities”. They refer to this as the “systems metabolic engineering framework”.  

The integration of technologies, especially to enable multiple iterations of design and construction of 

strains, could typically benefit from digitalisation and automation. The incorporation of artificial learning and 

artificial intelligence (AI) would remove the need for laborious, time-consuming human intervention between 

iterations. For example, the large number of metabolic engineering studies could provide an invaluable 

database. This source could capture information on titre (the concentration), yield and productivity in response 

to genetic and fermentation conditions. These data, in turn, could be built into machine-learning models, 

which increasingly remove human involvement in the design-build-test cycle. The day should come when the 

results of one round of “test” iteration should inform the next round of “design” without human intervention. 

Accelerated discovery of natural biological materials (see section 3.9 on the Earth BioGenome Project) is 

required to explore the diversity of materials and provide access to new materials properties that are 

lacking. The further development of next-generation deoxyribonucleic acid (DNA) sequencing and DNA 

synthesis is vital to such efforts. Research programmes could embrace these new technologies to give 

access to the potential power of vast libraries of biological materials (natural and synthetic) to create the 

materials and composites of the future. 

Regarding these libraries of biological materials, Hadadi et al. (2016) used computational tools to construct 

a database of all theoretical biochemical reactions based on known biochemical principles and compounds. 

This database complements projects such as the Earth BioGenome, which would open up the many 

“unknowns”. The database includes more than 130 000 hypothetical enzymatic reactions that connect two 

or more metabolites through novel enzymatic reactions. These reactions have never been reported in living 

organisms. Through the database, users can search for all possible routes from any substrate compound 

to any product.  

Reproducibility is a continuing problem 

The essence of the reproducibility problem is that design tools for process-based research and development 

(R&D) are inadequate. Increasingly, life science, and chemical and food product development have become 

a global supply chain of people, instruments, organisations, knowledge and data. This supply chain must 

be orchestrated to deliver an increasingly complex portfolio of products, while meeting intensifying cost and 

regulatory pressures. Integrating software therefore needs to go far beyond integrating in the laboratory: 

integration across the entire business is the best way to reduce errors. 

A recent survey identified reproducibility as an issue for design for a majority of respondents. The survey 

concerning scientific reproducibility achieved responses of 1 576 researchers, of which 703 were biologists. 

More than half pointed to insufficient replication in the lab, poor oversight or low statistical power. Physicists 

and chemists were the most confident of the reproducibility of their scientific literature. When respondents 

were asked how best to address the reproducibility issue, nearly 90% – more than 1 000 people – ticked 

“more robust experimental design”, “better statistics” and “better mentorship” (Baker, 2016). 

Early in the history of synthetic biology, Kwok (2010) highlighted reproducibility as a challenge and it remains 

so (e.g. Hayden, 2015; Beal et al., 2016). This challenge has to be conquered for bio-based manufacturing 

to become a credible manufacturing platform of the future. 

Many researchers have called for completely new computational languages for biotechnology. They argue 

that variants of natural languages such as English are too imprecise and ambiguous to tackle the highly 

complex systems of biology and biotechnology. Antha is perhaps the first bona fide attempt to create a 

programming language for general-purpose computation in biology (Sadowski, Grant and Fell, 2016). It is 

built on Google’s Go programming language, but incorporates domain-specific features, such as liquid 

handling planning. Antha is claimed to enable experiments of an entirely new level of complexity. It embraces 
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the departure from experimenting by changing one-factor-at-a-time enshrined in the scientific method, by 

enabling detection of interactions between different experimental factors.   

The creator of Antha, Synthace of London, exemplifies the challenge of reproducibility. Synthace worked with 

Merck to create a new microbial manufacturing platform for bio-therapeutics. They examined the interactions 

between 27 factors to integrate strain construction with process development. This is far too complex and 

time-consuming to address with a screening approach. Even screening a billion assays a second would 

result in impossible time periods to investigate every permutation of these 27 genetic and process factors. 

Using multifactorial methods, the system navigated this space, revealing key factor interactions in a small 

fraction of the time.   

Reliability, predictability and reproducibility 

Reliability and predictability are two other facets affecting reproducibility. The challenge of designing a fully 

predictable gene network is preventing engineering biology from realising its full economic impact. Many 

areas of engineering have confronted and solved similar challenges. Key to resolving this situation is the 

automation of the design-build-test bio-based engineering cycle.  

Robust and predictable scale-up is also necessary for success in biological manufacturing. Scale-up presents 

new and different challenges compared to laboratory-scale design. For example, a microbial production 

strain needs to be robust to function in an industrial-scale fermentation process: what works in a laboratory 

has every chance of failing in a 10 000 litre fermenter.  

Only a few examples have deliberately employed synthetic biology to increase robustness in bio-based 

production. To this end, the United States’ Defense Advanced Research Projects Agency (DARPA) has a 

research programme on Biological Robustness in Complex Settings (BRICS). BRICS is pursuing the 

fundamental understanding and component technologies needed to transition engineering biology systems 

from well-defined laboratory environments into more complex settings. In this new environment, they can 

achieve greater biomedical, industrial, and strategic potential. 

Automation can help address test-phase obstacles 

Automation in synthetic biology promises to clear bottlenecks in the test phase, but it needs engineering 

standards to facilitate data exchange. New HT evaluation and metrology methods are needed to overcome 

the test-phase bottleneck. These often involve bio-imaging methods and informatics workflows that are 

generally automated. They depend on sophisticated software for acquisition and management of both 

qualitative and quantitative data.   

The pursuit of automation in synthetic biology has been termed bio-design automation (BDA) (Densmore, 

2012). This approach is predicated upon solving small parts of a larger problem one piece at a time. After 

all the necessary pieces are defined and solved, solutions for each sub-problem can be automated, 

connected and reused to solve larger problems (Appleton et al., 2017). This process can arguably increase 

abstraction and reuse, and create greatly scaled systems, in size and complexity. 

One of the greatest challenges to realising BDA is the lack of engineering standards and documentation 

needed for repeatedly engineering these systems. All stages of the design cycle have opportunities to 

store and exchange data on genetic designs. Standards facilitate these data exchanges. Two of the most 

common standards in synthetic biology for these purposes are the Synthetic Biology Open Language and 

the Systems Biology Markup Language, the latter supported by more than 250 different software tools. 

Other standards are reviewed by Appleton et al. (2017), who also describe future needs, several of which 

call for open-source approaches to software development. 

Similarly, most research-based pharmaceutical companies use HT screening methods. This allows simultaneous 

tests of hundreds of thousands of compounds against a specific model of disease. Automation with robots 

has been necessary to achieve levels of throughput not feasible with humans. Now, a new generation of 
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automation is tackling even more complex functions. Known as intelligent automation, it is based on robotic 

process automation systems that combine process automation software and AI (KPMG, 2018). 

Manufacturing in the modern economy works because design and testing software can talk to manufacturing 

hardware via multiple layers of application programming interfaces. This points to the need for biotechnology 

to have its own high-level programming language(s) and software to transform the engineering design, 

testing and learning cycle. 

Industrial biotechnology and green chemistry convergence 

This subsection explores the convergence between industrial biotechnology and green chemistry. For Le 

Feuvre and Scrutton (2018),  

“(t)he conflation of synthetic biology and (combinatorial) synthetic chemistry, and exploration of potential 
connections with contemporary manufacturing platforms such as Additive Manufacturing (3D printing), defines 
a new era in the exploration of new advanced materials…” 

Digitalisation can hasten the convergence of green chemistry and industrial biotechnology. Green chemistry 

involves designing environmentally benign chemical processes. As such, it is one of the most important 

and practical tools to integrate principles of sustainable economic development into chemistry and the 

chemical industry (Makarova et al., 2017). Industrial biotechnology is largely about using biotechnology to 

produce chemicals of various types. The policy objectives of industrial biotechnology and green chemistry 

are, then, effectively the same. Both are “wet” sciences or technologies, and each discipline can serve the 

other. These shared qualities create a natural evolution towards convergence. To speed that evolution requires 

more than serendipity; there are clear ways in which digitalisation can hasten product development.  

Chemistry can help overcome a key technical challenge that undermines production of bio-based equivalents 

of high-volume chemicals. Three key metrics of bioprocesses are often poorer than in petrochemistry: titre, 

yield and productivity. These metrics are often too low to be scalable because most natural microbial 

processes are incompatible with an industrial process (e.g. Harder, Bettenbrock and Klamt, 2016; Maiti et al., 

2016). Chemistry can improve these metrics. In the case of ethanol, the titres and yields from fermentation 

are adequate. For many other chemicals this is not the case.  

Some bio-based chemicals are best made from biomass using a purely chemical process. In the end, the 

desired result is the same. Unsustainable chemicals and materials are eventually replaced with bio-based 

equivalents that are sustainable and renewable. This is not simply about using chemical tools to aid biology 

or biology tools to aid chemistry. Rather, it is a genuine co-operation to make a better result.  

Industrial biotechnology converges with chemistry and with information 

technology/computing 

There is plenty of scope for digitalisation to enhance the production advantages of combining industrial 

biotechnology and green chemistry. For example, Gerbaud et al. (2017) have proposed computer-aided molecular 

design (CAMD) for bio-based commodity molecules. They discussed coupling CAMD tools with computer-

aided organic synthesis tools for two purposes. First, they could propose enhanced bio-sourced molecules, 

which could be synthesised using eco-friendly pathways. Second, they could analyse their sustainability. 

Data analysis and storage as bottlenecks 

Conquering the challenges of the test phase and convergence will push the bottleneck into data analysis 

and storage. This subsection looks at using DNA to avoid the storage problem, and how policy makers can 

support this process. 
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A fully multiplexed design-build-test cycle that links phenotype to DNA sequence will enable the evaluation 

of millions of designs per cycle. However, this will also create an unprecedented amount of data. This, in 

turn, may move the production bottleneck to data storage.  

In the age of ML, data should ultimately inform the next iteration of design in the absence of humans 

(Rogers and Church, 2016). For example, AutoBioCAD promises to design genetic “circuits” for E. coli with 

virtually no human user input (Rodrigo and Jaramillo, 2013). Thus, algorithms are needed that incorporate 

ML to correlate data from different data sets. The aim is to link genes, proteins and pathways without a 

priori knowledge (Wurtzel and Kutchan, 2016). 

Is DNA storage the answer? 

A crisis in data storage is looming in the next two decades as silicon-based storage methods struggle to 

keep pace with demand. Long-term storage is perhaps the fastest growing segment of the data storage 

market. In 2015 and 2016 combined, more data were created than in all of preceding history (Service, 

2017). By 2040, if all data were stored for instant access, the archive would consume 10 to 100 times the 

expected supply of microchip-grade silicon (Zhirnov et al., 2016). Without radical change, a data crunch 

may be unavoidable. 

DNA as a storage medium may offer a way to prevent a storage crisis. It seems far-fetched to store digital 

data in DNA, but it is already possible to translate digital information into genetic information. In 2016, 

researchers at Microsoft and the University of Washington broke the record for storing digital data in DNA. 

They managed to store and retrieve 200 megabytes (MB) of information (including high-definition video, 

multiple books and articles as well as a database) using DNA provided by Twist Bioscience (Ogunnaike, 

2016). In 2018, they doubled their record to 400 MB of data on DNA. Their breakthroughs could pave the 

way to exabyte storage (Tung, 2018). 

As an example of the possibilities of DNA storage, Shipman et al. (2017) encoded real information (images) 

and optimised the method of delivery, nucleotide content of the sequences and reconstruction method. 

They used a population of bacteria. 

The storage potential of DNA vastly exceeds that of all other media. One estimate suggests all the world’s 

data could be stored in 1 kilogramme of DNA (Extance, 2016). Another proposes that 215 petabytes (PB) 

(215 million gigabytes) – roughly all the information on the Internet – could be stored in a single gramme 

of DNA (Service, 2017). 

DNA storage is much too expensive as a storage medium, as the technology is only in its formative stages. 

While the cost of DNA sequencing has become trivial, DNA synthesis (writing), despite reduced costs, is 

still too expensive for mass exploitation. It remains orders of magnitude higher than sequencing costs.1 

What needs to be done, in general terms, to commercialise DNA storage, is the following: 

 Develop better algorithms to translate digital information into biological information and to enable 

fast, accurate and cost-efficient retrieval of information. 

 Invent and advance new chemistries to enable cheap DNA synthesis. 

 Incorporate more automation in production workflows to achieve cost reductions.  

Public policy can help achieve all of these goals, especially in research subsidy, support for small and 

medium-sized enterprises and spin-outs, and policies to support technology transfer. In particular, support 

for automation through public foundries would be important. Reducing transaction costs by identifying 

fruitful public-private partnerships would also hasten progress: a leading partnership between Microsoft 

and the University of Washington could be a model. Research programmes that target industry-academia 

collaboration would be one way to build such partnerships.  
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Blockchain for benefit sharing and protecting sensitive information 

Blockchain, which uses a highly secure, distributed database technology, holds a number of advantages 

for different types of life sciences projects and companies. It is “an open, distributed ledger that can record 

transactions between two parties efficiently and in a verifiable and permanent way” (Iansiti and Lakhani, 

2017). The technology, with its high level of encryption and security, is at the heart of Bitcoin and other 

virtual currencies. 

The Earth BioGenome Project (EBP) aims to sequence all the plants, animals and single-celled organisms 

on Earth (the eukaryotic species) within ten years to help unlock the vast economic potential of biodiversity 

(EBP, n.d.). As one hurdle for such an ambitious project, data sharing must balance two goals. On the one 

hand, it must ensure a permanent, freely available resource for future scientific discovery. On the other, it 

must respect the access and benefit sharing guidelines of the Nagoya Protocol2 (Lewin et al., 2018).  

The EBP aims to address the challenge of data storage. The completed project will generate around 

200 PB of data. This will require new architectures, algorithms and software for improved quality, efficiency 

and cost-effectiveness, as well as data analysis, big data visualisation and sharing. The project is expected 

to promote these tools for equitable worldwide sharing of data, analytic tools and data mining resources.  

Blockchain could also support traceability for benefits sharing and prevention of bio-piracy. By registering 

biological and biomimetic intellectual property (IP) assets on the blockchain, code banks could record the 

provenance, rights and obligations associated with nature’s assets. This could help track their provenance 

and use (World Economic Forum, 2018).  

Blockchain may help tackle the quite different challenges applying to the health and pharmaceuticals 

industry, especially around sensitive patient data. This branch of the life services industry is generating an 

increasing amount of sensitive data and transactions. Some have proposed that blockchain will become 

essential in dealing with these growing data (KPMG, 2018). Blockchain is well suited for managing areas such 

as supply chain, privacy, transaction processing, contracts and licensing, and sensitive medical records.  

Digital security 

All life sciences, whether public or private, are vulnerable to cyber-attacks. Bio-based industries that help 

produce chemicals and materials have similar concerns for cybersecurity as the chemicals industry. Bio-

production relies heavily on data, on IP and research, all of which need protection for firms to reap the 

financial benefits of their investments.   

The health and pharmaceuticals sector of the life sciences face these and other more specific issues, such 

as patient privacy. A recent survey indicated that companies are elevating cybersecurity to a strategic 

imperative. However, the pace of protection lags behind their desire to adopt digital technologies to drive 

innovation (KPMG, 2018). There are many ways to launch a cyber-attack on a bio-production company. 

Many different types of organisation are involved in bio-production security. They range from feedstock 

suppliers and customers to information technology (IT) professionals from law firms and IP offices. 

Cybersecurity is only as strong as the weakest link in the overall system of protection. 

Cloud computing 

Life sciences companies in health and pharmaceuticals are increasingly using cloud computing to optimise 

complex processes with a view to reducing business costs. For example, user-based pricing models are 

paving the way to lower capital investment and operational costs (KPMG, 2018). Cloud-based solutions 

can make data available for clinical trials while meeting security and regulatory requirements. Further, the 



152  6. DIGITALISATION IN THE BIOECONOMY: CONVERGENCE FOR THE BIO-BASED INDUSTRIES 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

cloud enables complex data analysis from Internet of Things and real-time devices. For such reasons, 

cloud technology is one of the top priorities in enhancing internal efficiency. 

Frontiers in bio-production 

This section examines three of many different and intersecting future bio-production strategies: biofoundries, 

bio-based three-dimensional (3D) printing and cell-free synthetic biology. The three are described in 

ascending order of their expected deployment. First, as “design, build, test” iteration facilities, biofoundries 

are expected to drastically reduce the time and effort needed to go from idea to product. Second, bio-based 

3D printing can capture the complexity of a biological entity (e.g. cell, tissue or higher form of biological 

specialisation such as an organ). It requires an intimate marriage of genetic and digital code to guarantee 

the high levels of accuracy needed. Third, cell-free synthetic biology expresses much of the control at the 

digital level to create cell-free biomanufacturing processes.  

Biofoundries 

This subsection concentrates on the need for biofoundries to be created within public research organisations. 

Biofoundries can integrate tools, technologies and overall process analysis into a platform to enable more 

efficient biological engineering. Through reduced cycle times and increased capacity, biofoundries might 

help achieve sustainability goals.  

A biofoundry develops and integrates industrially relevant production microbes; advanced tools for biological 

engineering and data analysis; and robust, scaled-up processes for integrated biomanufacturing. In a traditional 

biorefinery, fermentation science and engineering may dominate at a large industrial scale. Biorefineries, 

conversely, are seldom discussed in terms of production strain manufacture and biological engineering. 

The biofoundry might also be viewed as a much smaller facility for HT iterative processes. These processes 

are driven by robotics and automation prior to scale-up in a larger facility such as a biopharmaceutical 

production plant or an industrial biorefinery. Ultimately, the streamlining of both into a single industrial 

workflow could be possible.  

Box 6.2. Examples of public biofoundries 

The Edinburgh Genome Foundry (EGF). The EGF claims to be the only fully automated DNA design, 

assembly and test facility in the United Kingdom. The EGF hosts CUBA, a collection of free public apps 

to assist with various DNA design and manufacturing tasks. It also has graphical frameworks and 

computational libraries for DNA design and manufacturing. It is creating EMMA-DB, a new web platform 

to manage genetic parts for the EMMA assembly standard, and to design new constructs from these 

parts (EGF, n.d.). 

National University of Singapore biofoundry. The aim is to drive foundational science towards 

translational clinical and industrial biotechnology applications. The foundry is equipped with a robotic 

system that interfaces with various HT analytical instruments. This enables the biofoundry to systematically 

(re)design, build, test and learn to make an efficient, automated manufacturing platform. The Singapore 

biofoundry aims to become a central hub for synthetic biology research in Asia. 

The MIT-Broad Foundry. Faced with uncertainties about the technology, this biofoundry was tasked 

with building organisms to produce ten molecules in three months without the biofoundry staff knowing 

the molecules in advance. The foundry produced the desired molecule, or a closely related one, for  

six out of ten targets and advanced towards production of the others (Casini et al., 2018; MIT-Broad 

Foundary, n.d.). 
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Alternatively, the classic hallmark of engineering may be envisioned with design in a biofoundry and manufacture 

in a separate plant at a different, even international, location. Instead of biotechnology companies owning 

and running their own laboratories, biofoundries in the future could do this for them (The Economist, 2018). 

The earliest biofoundries have already arrived (Box 6.2).  

McClymont and Freemont (2017) argue that existing or new automation technologies can enable reproducible 

research. For this to happen, the technologies must be present in both individual research groups and 

centralised DNA foundries that can be accessed using cloud-based applications. They envisage that individual 

laboratories with in-house, low-cost automation work cells can access biofoundries via the cloud to carry 

out more complex experimental workflows. Technology companies exist to start enabling this process. 

Individual researchers and organisations can send experimental designs to foundries and return output 

data to the researchers. 

McClymont and Freemont (2017) contend this strategy of individual, decentralised researcher/organisation 

and centralised biofoundry linked to the cloud via technology companies has tremendous potential. They 

believe it should “shift a growing proportion of molecular, cellular and synthetic biology into a fully 

quantitative and reproducible era”. 

3D bio-printing 

In 3D bio-printing, layer-by-layer precise positioning of biological materials, biochemicals and living cells is 

used to fabricate 3D structures (Murphy and Atala, 2014). Much of the literature concentrates on printing 

tissues and organs. Work has already started on 3D printing of bacteria for various bio-production purposes, 

although the field is still in its infancy. Previous work on producing chassis strains for production has 

focused on making minimal cells that act as the chassis, to which other functionalities are subsequently 

added (e.g. Kim et al., 2016).  

Alternatively, Kyle (2018) discussed 3D printing for applications as diverse as bioremediation, environmental 

biosensors, oil spill filters and wound dressings. A particularly enticing prospect is to use bacteria to couple 

materials production with 3D printing technology. There are many challenges. Apart from the sheer volume 

of technical work, the future of the field will have to reconcile many issues before 3D bio-printing of bacteria 

can become “the next frontier in biofabrication” (Kyle, 2018). These issues include reusability, scalability, 

faster printing times and the environmental impact of 3D bacterial printing systems.  

Cell-free synthetic biology 

For now, the most relevant application of cell-free synthetic biology relates to metabolic engineering for 

the production of fuels, chemicals and materials. Naturally, it also applies to other bio-production processes 

and products. Directly related to the presence of the cell itself, various problems arise when using microbes 

as living chemical factories. Even in a simple bacterium, cellular metabolism is complicated and hard to 

control. The desired product, if it accumulates within the cell, is often toxic to the cell.  

Alternatively, cell-free systems present several critical advantages. These include fast synthesis rates, 

direct reaction control and tolerance to toxic substrates or products. Also, cell-free systems circumvent the 

oft-quoted problem of scale-up because they are inherently industrially scalable (Zawada et al., 2011). The 

“inefficiencies” of fermentation processes (yield, titre and productivity) can be overcome in the absence of 

the cell. Therefore, cell-free systems provide a better possibility to produce the substance of interest at 

maximal yield to improve the bio-production process (Lu, 2017).  

For the policy maker and risk assessment community, cell-free synthetic biology in environmental 

applications generates certain benefits. In bioremediation, for example, it would allow deployment of gene 

networks and metabolic pathways without risk of unrestrained replication and spread of new microbial 

strains (Karig, 2017). This would therefore circumvent the need to assess the risk from genetically modified 
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organisms (e.g. OECD, 2015). Nevertheless, any potential risks from cell-free synthetic biology would still 

require science-based risk assessment. 

Predictably, many difficult technical challenges remain. To broaden the applications, cell-free synthetic 

biology needs to be integrated with other technologies, such as 3D printing and AI. Thus, the need for 

greater convergence with chemistry and information technologies is evident.   

Skills and education for the bioeconomy workforce 

This section looks at the need for greater inter- and multidisciplinary education that would equip graduates 

with sufficient depth and breadth to drive the bioeconomy workforce. Delebecque and Philp (2018) looked 

at skills and education gaps from the production workforce to R&D. They concluded that higher education 

is not ready for a revolution in manufacturing that includes bio-based production. Time is limited to address 

the challenges: the Netherlands alone will soon require an estimate 10 000 bioeconomy experts (Langeveld, 

Meesters and Breure, 2016).  

At the nub of the issue is the need for much greater inter- and multidisciplinary education. This training 

must combine biology and engineering fields with sufficient depth so as not to trivialise them. At the same 

time, these graduates need sufficient breadth to be truly problem-solving pioneers of engineering biology.  

Backcasting: Mechatronics revisited to shape the education of the future  

engineering biologist 

Mechatronics, already central to the modern global economy, could yield lessons for educating future 

engineering biologists. A translation of the French standard NF E 01-010 (Norme Française, 2008) defines 

mechatronics as “an approach aiming at the synergistic integration of mechanics, electronics, control 

theory and computer science within product design and manufacturing, in order to improve and/or optimise 

its functionality”. 

Historically, the rise of the mechatronics engineer depended on uniting the principles of mechanics, 

electronics and computing to generate simpler, more economical and reliable systems. Education was 

refined over decades to optimise the undergraduate curriculum. This helped create the mechatronics 

engineers that have revolutionised manufacturing. Such an education necessitated multi- and inter-

disciplinarity in critical fields such as mechanical, electrical, electronic, computer and control engineering.  

The experience of mechatronics studies could inform an approach to educating a workforce for the 

bioeconomy. The integration of various fields has resulted in mechatronics engineers who can both solve 

design problems and manufacture. This is exactly the mix required by engineering biology.   

The transition from an orientation based on research to production will require a paradigm shift in 

biotechnology education (Delebecque and Philp, 2018). Universities will need to attract school-leavers with 

a more mathematical background into biotechnology. Students who graduate will need to be equally 

capable in DNA engineering and computation.   

Digitalisation of the forestry bioeconomy 

Digitalisation could offer forestry solutions that add value to the bioeconomy. Many countries with a 

significant forestry industry have large numbers of forest owners and few forests. Europe alone has some 

16 million forest owners (Hetemäki, 2014). Compare this with the oil industry, where over 80% of the 

world’s proven crude oil reserves are located in the 13 OPEC countries.3 Forestry biorefineries, by 

comparison to oil refineries, are expected to be small to medium facilities with local production and perhaps 

local consumption, a classic example of distributed manufacturing (Srai et al., 2016).  
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A local forest bioeconomy ecosystem and value chain could include hundreds of thousands of forest 

owners, entrepreneurs and companies specialising in forest service, harvesting, transport and logistics, 

and the production of forest products or energy. Managing this complexity requires IT tools such as apps, 

websites, consumer platforms and databases. Consumers are using several IT tools to both steer demand 

and extend their influence throughout the value chain (MISTRA, 2017). With the circular forestry bioeconomy 

in mind, Figure 6.2 shows a concept of how digital solutions can add value to the bioeconomy.  

Figure 6.2. Digitalisation and the circular forestry bioeconomy 

 

Source: Adapted from MISTRA (2017), “Bioeconomy and digitalisation”.  

Satellite technology in the forest bioeconomy 

Satellite technology may be a critical tool for the forest bioeconomy, both to monitor biodiversity and to 

combat illegal logging. National forest monitoring systems need to deliver cost-effective and quality-controlled 

information across the three pillars of the bioeconomy (social, economic and environmental). Most recently, 

climate change has become a driving force for forest monitoring, especially concerning forest degradation 

and deforestation (Asner, 2009; Mitchell, Rosenqvist and Mora, 2017). The mitigation of climate change 

through forest management by storing carbon in the forest ecosystem is likely to become an economic and 

financial tool for forestry (Holmgren and Marklund, 2007). But without robust statistics, understanding the 

loss of biodiversity and reduction of carbon sequestration capacity from deforestation and forest degradation 

becomes much more difficult. 

Forest monitoring is no easy task. In the past, foresters would use field and aerial surveys to collect forest cover 

data and aerial photography to analyse forest stocks. All of these methods were slow, laborious and expensive.  
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Satellite monitoring may be the only feasible future method of forest monitoring (Lynch et al., 2013). In an 

interesting development, a Finnish company combines machine-vision software and light detection and 

ranging technology (Arbonaut, n.d.). At an altitude of around 2 kilometres, laser beams can generate three-

dimensional point data on an object as small as a single tree. Knowing the diameter of the crown of the 

tree can predict its volume (MEAE, 2017).  

Making such forestry inventories supports sustainable forestry management (Crowther et al., 2015). The 

technology can also be used to assess carbon stocks in tropical forests. It can calculate the amount of 

carbon dioxide (CO2) removed from the atmosphere, entitling a country to payments for carbon capture 

via forests under the Paris Agreement.  

Another major issue for a burgeoning forest bioeconomy is illegal logging. This practice already costs 

nations tens of billions of dollars annually, and contributes some 12% of total anthropogenic CO2 emissions 

globally (Lynch et al., 2013). Illegal logging is linked to warlordism, land grabbing and violent crime (Nuwer, 

2016). It is also, of course, in violation of national regulations. 

A satellite-based alert system could prove a potent weapon in the fight against deforestation through illegal 

logging. Less than eight hours after it detects that trees are being cut, a system can send e-mails to warn 

that an area is endangered. That rapid response could enable environmental managers to catch illegal 

loggers before they damage large swathes of forest (Popkin, 2016). The traditional methods of forest 

monitoring are far too slow to be useful against illegal logging, as speed is essential.  

Examples of the potential for future bio-based materials 

Many examples could illustrate the potential for bio-based materials. The three selected all have high economic 

and societal value, but differ in terms of engineering biology and IT or chemistry convergence (Box 6.3). 

 

Box 6.3. Selected bio-based materials of high economic and social value 

Angiotensin converting enzyme inhibitors  

Captopril was the first marketed angiotensin converting enzyme (ACE) inhibitor. Its effects on blood 

pressure mechanisms mimicked those of a peptide discovered in the Brazilian pit viper Bothrops jararaca 

(Mladic et al., 2017). The viper uses an ACE molecule to make its prey faint from a rapid drop in blood 

pressure. The discovery heralded major changes in the approach to treatment of hypertension and 

heart failure.  

ACE inhibitors have been credited with saving millions of lives. The ACE market, valued at USD 11.7 billion 

in 2015, was expected to reach USD 12.45 billion by 2024. The search continues for new ACE inhibitors 

due to the prevalence of hypertension as the human population ages.  

It is unlikely that much benefit reverts back to the genetic origins of the initial discovery. A goal of the 

Nagoya Protocol is to distribute wealth created from genetic discoveries more evenly. The Access and 

Benefit-sharing Clearing-House (ABS Clearing-House) is a key tool for monitoring the use of genetic 

resources along the value chain, including through the internationally recognised certificate of compliance. 

Blockchain technology lends itself to this task. It can record transactions between two parties efficiently 

in a verifiable and permanent way, thus providing secure traceability. Blockchain could also provide 

enhanced security of data in clinical trials. 
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Graphene and green chemistry 

Graphene is a key material of the future. It conducts electricity better than copper and will eventually 

find its way into consumer electronics. Electricity conductance and physical flexibility mean that graphene 

has many potential applications. These range from energy storage devices to lighting and displays, 

solar panels, tyres, bicycle frames and fashion items (Mertens, 2018). For example, deformable batteries 

with flexible, foldable and/or stretchable capabilities are ideal for wearable and portable electronics (Ye 

et al., 2018). Graphene may be the material of choice for 3D printable batteries. Estimating the market 

value of graphene is complicated as the range of uses cannot yet be fully explored. It is mainly limited 

to research applications due to high costs. The 2015 price was some USD 500 per gramme. 

Researchers in Australia have created a new method of graphene synthesis. It involves heating 

soybean oil in air until it breaks down into carbon building units that are essential for the synthesis of 

graphene (Seo et al., 2017). Moreover, the researchers demonstrated the versatility of the method by 

using other renewable carbon-containing materials such as butter.  

While soybean oil has other valuable uses, lignin is generated in large quantities. However, it is difficult 

to valorise in any value-added process due to its complexity. Lignin is produced in large quantities in the 

pulp and paper industry, and often burned for power generation. However, Liu, Chen and Gao (2017) 

described a method for converting lignin into graphene. 

Spider silk 

Spider silks are the toughest known biological materials. They are lightweight and virtually invisible to 

the human immune system, and thus have “revolutionary potential for medicine and industry” (Babb et 

al., 2017). Among newer applications of spider silk being considered are microphones in hearing aids 

and cell phones. Stronger than steel, tougher than Kevlar, the range of applications is large. For example, 

the US army has been testing protective garments for soldiers made from spider silk. An E. coli variant 

of spider silk could replace Kevlar in air bags as it is both strong and flexible. And in 2017, Adidas 

unveiled a spider silk shoe using Biosteel fibres from AMSilk. Called the Adidas Futurecraft Biofabric, 

the shoes are reported to be biodegradable in less than 36 hours in the presence of an enzyme. 

Biologists are attracted to the study of spider silk because of the large diversity of silks and proteins 

involved in their synthesis. Even after decades of research on orb-weaver spider silks, knowledge of all 

the proteins within an orb-weaver species is incomplete – and there are tens of thousands of spider 

species. Moreover, nature can also inform a production process: there are genes that encode proteins 

that turn liquid silk into solid silk thread. Genomics is the newest tool to unravel this complexity.  

Engineering biologists are interested in spider silk as there are many candidates of genes and proteins 

for transgenic studies. This implies the possibility of tailor-made spider silks for different materials and 

applications. However, working with spiders as factories is impracticable. The expression of spider silk 

genes in a microorganism with subsequent fermentation processes is much more attractive. Much 

remains to be discovered. The sheer diversity of spiders and their silks lends itself to use of digital tools 

for curating knowledge, as well as for the “pick and mix” analysis for new consumer applications. 

Expression in microorganisms is extremely complex. Digitally assisted design, screening and 

automation will be needed to drastically reduce the design, build and test time. 

Policy implications 

Engineering biology materials have implications for policy makers with respect to platform technologies to 

support delivery of the materials; standardisation, interoperability and IT; sustainability; and digital sector. 

This section unpacks each of these implications. 
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Platform technologies to support the delivery of engineering biology materials 

Focus R&D subsidy on achieving reproducibility of bio-production processes: Precompetitive design of 

R&D programmes (for laboratory-scale considerations) and near-market collaborative programmes could 

ensure that research proposals are only successful if they concentrate on improving reproducibility. Less 

fashionable near-market research issues also need to be investigated. These include robustness-in-design 

(e.g. DARPA’s BRICS); titre, yield and productivity; bioprocess variables, such as the effects of media 

variability (e.g. different sources of molasses); internal gradients, such as oxygen and redox; and tolerance 

to shear stress that can cause cell breakage. Combining digital and biological tools is the best available 

way to reduce discovery time given the complexity of biology.  

Platform technologies of various sorts: Governments need to support the platform technologies required 

(e.g. biofoundries, distributed R&D networks, digital platforms, data curation and digital/genetic data storage). 

This is the case because investment risks are too high for the private sector, and the imperatives for private 

action may be missing (e.g. a clear route to market). This goes beyond R&D subsidy. Innovative forms of 

public-private partnership are needed. These would enable both public and private actors to gain fair 

access to equipment, services and data (see suggestions below on IP and licences).  

Academic/industry/government co-development that can implement and innovate these technologies: 

Implementation that involves both public and private actors could involve national action plans and roadmaps. 

In the United Kingdom, for example, a “leadership council” is constituted to ensure that deadlines and 

milestones for implementation are met. This council can easily report at ministerial level to maintain an 

appropriate political focus and vision.  

A highly trained interdisciplinary workforce: For too long, the life sciences have been compartmentalised by 

discipline, such as microbiology, biochemistry and molecular biology. A greater focus on problem solving, 

using interdisciplinarity and including soft skills, is more appropriate to graduating biologists seeking 

careers in manufacturing (Delebecque and Philp, 2018). In a related issue, policy makers should prioritise 

identifying a common language and vision, both computing and spoken. It should place engineering biology 

at the nexus of other disciplines, especially materials science, automation engineering, chemistry, computer 

science and engineering. Both chemistry and biology benefit from greater levels of digitalisation, and the 

extremely important synergy of engineering biology with green chemistry should be a specific focus. 

Standardisation, interoperability and intellectual property  

Standardisation, interoperability and IP: Standardisation and interoperability policies can be seen throughout 

the history of the microprocessor industry and, more recently, in information and communication technology 

(ICT). The issues for engineering biology are similar, but the modern context highlights some differences. In 

particular, policy makers need to consider carefully the ongoing debate about open access versus IP protection 

to satisfy the desires of academia and the need for sufficient protection to motivate private investment.   

Legal issues are inextricably linked with standards that enable product and process interoperability. Rules 

may be required that licences be either royalty-free or royalty-bearing on terms that are “fair, reasonable 

and non-discriminatory”, a system used extensively in the ICT sector (Contreras, Rai and Torrance, 2015). 

If patents on standards are obtained, what rules will govern the terms on which they will be made available 

to the community? Best outcomes for engineering biology will likely result from simultaneous consideration 

of technical standards and IP issues, with lessons to be learned from the ICT sector. 

The use of materials transfer agreements (MTAs) provide an example of potential difficulties. MTAs underlie 

the legal frameworks within which biotechnology practitioners define the terms and conditions for sharing 

biomaterials. However, MTA legal arrangements pre-date the widespread adoption of the Internet, engineering 

biology, genome sequencing and gene synthesis. As such, they can place restrictions on the redistribution 

and commercial use of biomaterials. Moreover, they are not aligned with changes in the social objectives 

of science.  
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In response, Kahl et al. (2018) suggested a new model, the Open Materials Transfer Agreement (OMTA). 

This would relax restrictions and support widespread adoption within automated and semi-automated 

administration systems. Benefits of electronic platforms are various. Incorporation of the OMTA within 

electronic platforms could enable less restrictive options for sharing biomaterials as appropriate. Technology 

transfer offices could still review and approve such transfers, but electronic communications could replace 

paperwork and individual negotiations. Such electronic platforms could also offer provenance tracking, 

which may be a sustainability consideration.  

Sustainability  

Sustainable materials manufacturing and management: There are roles for digital technologies in judging 

sustainability. Sustainability standards should be an intense focus in the bioeconomy generally, and specifically 

in engineering biology and biomanufacturing. Issues such as the provenance of feedstocks could be 

explored using blockchain technology. Automated, digitalised protocols for sustainability assessment would 

decrease the financial burden on small companies tasked with proving the sustainability of their products 

and processes. For example, it could compare greenhouse gas emissions savings associated with products 

and primary fossil energy savings of the manufacturing processes with costs of fossil counterparts.  

Digital security 

Digital security: Individual facilities, whether publicly or privately held, could develop and validate methods 

and protocols for facility staff or external service providers to fortify the facility (Murch et al., 2018). This 

has special applicability to public-private partnerships as public research organisations are notoriously 

co-operative and “leaky”. 

Governments could encourage the sharing of timely cyberthreat information by providing protections related 

to lawsuits, public disclosure and antitrust concerns, as well as safeguarding privacy and civil liberties. 

Cybercrimes should be prosecuted vigorously. Perpetrators should be held responsible for harm to operating 

systems, for stealing IP and trade secrets, or for unlawfully obtaining personal information for financial gain. 

Governments could encourage cybersecurity awareness-building and co-operation. One example could 

be to encourage public sector actors to run cyber-attack simulations and to share the lessons learned. 

Efforts to enhance cybersecurity should be recognised through, for example, voluntary standards, regulations, 

industry programmes and information-sharing frameworks. 

Conclusion    

This chapter attempts to draw the needs associated with digitalisation to the attention of policy makers. 

This starts with education. In the near term, engineering biology needs successes. For the public policy 

maker, there is nothing better than success stories to show that taxpayers’ money is being wisely spent. 

But policy must also give the private sector confidence that governments realise that the era of bio-based 

production has arrived. 

Due to foundations laid down in previous decades, biology, quite suddenly in this decade, finds itself in a 

data-rich era. This trend will undoubtedly continue and has implications for biotechnology and the emerging 

engineering biology. Literally hundreds of engineering (synthetic) biology start-ups are receiving investments. 

However, engineering biology needs a large increase in its quantitative precision to qualify as a manufacturing 

discipline. Some solutions can come from biology itself, but a greater alignment with automation, as in so 

much of modern manufacturing, is also needed. When married to the complexity of biology, there is an 

obvious need for a step-change in digitalisation. 
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Notes

1 Estimates of trends in DNA sequencing and synthesis costs are available at the Bioeconomy Dashboard: 

www.bioeconomycapital.com/bioeconomy-dashboard/. 

2 The Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits 

Arising from their Utilization to the Convention on Biological Diversity is an international agreement that 

aims at sharing the benefits arising from the utilisation of genetic resources in a fair and equitable way. 

3 See data provided by the Organization for Petroleum Exporting Countries, 

www.opec.org/opec_web/en/data_graphs/330.htm. 
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This chapter is based on the OECD Committee for Scientific and 

Technological Policy project and its exploration of digital science and 

innovation policy (DSIP) and the challenges it faces. DSIP initiatives refer to 

the adoption or implementation by public administrations of new or reused 

procedures and infrastructures relying on an intensive use of digital 

technologies and data resources to support the formulation and delivery of 

science and innovation policy. The chapter focuses on three issues in 

particular. First, it examines the need to ensure interoperability through 

which diverse data sets can be linked and analysed to aid policy making. 

Second, it looks at preventing potential misuses of DSIP systems in 

research assessment practices. Third, it explores management of the roles 

of non-government actors, particularly the private sector, in developing and 

operating DSIP infrastructure components and services. 
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Introduction 

As scientific research and innovation increasingly leave a digital “footprint”, datasets are becoming ever 

larger, more complex and available at higher speed. At the same time, technological advances – in machine 

learning (ML) and natural language processing, for example – are opening new analytical possibilities. 

Science, technology and innovation (STI) policy can benefit from these dynamics (Box 7.1). They can 

harness the power of digitalisation to link and analyse datasets covering diverse areas of policy activity 

and impact. For example, initiatives already experiment with semantic technologies to link datasets, with 

artificial intelligence to support big data analytics and with interactive visualisation and dashboards to 

promote data use in the policy process. 

Box 7.1. A short overview of the OECD DSIP project 

Over 2017 and 2018, the OECD mapped the landscape of digital science and innovation policy (DSIP) 

initiatives in OECD countries and partner economies. The OECD DSIP project aimed to help policy 

makers and researchers assess the transformational potential and possible pitfalls of using digital tools 

and sources in science and innovation policy making. The project also sought to facilitate learning between 

countries that are planning, developing or using DSIP systems. The project was carried out under the 

supervision of the OECD Committee for Scientific and Technological Policy (CSTP) and its Working 

Party of National Experts on Science and Technology Indicators. 

The project included a survey of DSIP initiatives that provides much of the evidence used in this chapter. 

The survey had three elements: 

 CSTP delegates identified, and characterised to a basic level, 61 DSIP initiatives in their countries. 

 Of these 61 initiatives, 39 DSIP initiative managers completed a questionnaire providing further 

details on the characteristics of their systems, including the data they use, the ways they link 

data and the main challenges they face. 

 The OECD Secretariat conducted 20 follow-up interviews with DSIP initiative managers to 

understand better the origins and dynamics of their systems. 

The OECD Secretariat carried out further interviews with leaders of not-for-profit organisations, e.g. Open 

Researcher and Contributor ID (ORCID) and the Common European Research Information Format. It 

also met with senior managers from corporate DSIP solutions providers, including Microsoft and Elsevier. 

The project also included a case study of Norway’s DSIP landscape, as described in Box 7.4. 

What is digital science and innovation policy? 

Figure 7.1 provides a stylised conceptual view of a DSIP initiative and its main components. All of these 

elements interact in nationally specific ways, reflecting each country’s history and institutional set-up. The 

main elements consist of various input data sources. These feed into a data cycle enabled by interoperability 

standards, including unique, persistent and pervasive identifiers (UPPIs). DSIP systems can perform a number 

of functions and are often used by a mix of users. Box 7.2 outlines several examples of DSIP initiatives from 

across the world. 
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Figure 7.1. A stylised conceptual view of a DSIP initiative and its possible main components 

 

Note: DSIP = digital science and innovation policy; STI = science, technology and innovation; HEI = higher education institution; PRI = public research institution; API = application programming 

interface; UPPI = unique, persistent and pervasive identifier; HR = human resources; RD&I = research, development and innovation. 

Source: OECD (2018), OECD Science, Technology and Innovation Outlook 2018: Adapting to Technological and Societal Disruption, https://doi.org/10.1787/sti_in_outlook-2018-en. 

https://doi.org/10.1787/sti_in_outlook-2018-en
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Data are predominantly sourced from a mix of administrative data sources held by funding agencies (e.g. 

databases of grant awards) and organisations that perform research, development and innovation (RD&I). 

These include Current Research Information Systems (CRIS) in universities, and proprietary bibliometric and 

patent databases. Some DSIP systems have grown out of these databases. Through integration with external 

platforms or development of add-on services, they have evolved into infrastructures that can deliver comprehensive 

data analysis on research and innovation activities. Other systems have been established from the ground up. 

Several DSIP systems harvest data from the web to build a picture of the incidence and impacts of science 

and innovation activities. Web sources include, but are not limited to, company websites and social media.  

DSIP infrastructures can increase the scope, granularity, verifiability, communicability, flexibility and timeliness 

of policy analyses. They can lead to the development of new STI indicators (Bauer and Suerdem, 2016), 

the assessment of innovation gaps (Kong et al., 2017), strengthened technology foresight (Kayser and 

Blind, 2017) and the identification of leading experts and organisations (Shapira and Youtie, 2006; Johnson, 

Fernholz and Fosci, 2016; Gibson et al., 2018). Furthermore, in some countries, researchers and policy 

makers have started to experiment with natural language processing and ML. They are using it to track 

emerging research topics and technologies (Wolfram, 2016; Mateos-Garcia, 6 April 2017) and to support 

RD&I decisions and investments (Yoon and Kim, 2012; Park, Yoon and Kim, 2013; Yoon, Park and Kim, 

2013). Box 7.3 outlines the range of goals set for DSIP initiatives. 

Box 7.2. Examples of DSIP systems covered by the OECD study 

Databases of public funders 

In Belgium, the Flemish department of Economy, Science and Industry, in co-operation with data providers 

and information technology partners, developed the Flanders Research Information Space (FRIS) in 

2011. It aims to accelerate innovation, support science and innovation policy making, share information on 

publicly funded research with citizens and reduce the administrative burden of research reporting. The 

FRIS is a single window on all Flemish research. It can be used by government agencies in several ways. 

First, it is a tool to improve the visibility of research funding programmes. Second, it is a resource for in-

depth analyses of scientific and technological trends and the development of statistical indicators on STI. 

In Brazil, the National Council for Scientific and Technological Development established Lattes Platform 

with support from the Ministry of Science and Technology, the Ministry of Education and the government 

body “Co-ordination for the Improvement of High-Level Personnel”. The platform supports policy design 

and formulation, management of research funding programmes and strategic planning. It is based on 

integrations of a variety of digital resources of Brazilian government agencies and higher education 

institutions (HEIs). Aside from visualising Brazilian STI datasets, Lattes Platform enables the design of add-

on analytical solutions to better serve the needs and expectations of science and innovation policy makers. 

In Poland, the Ministry of Science and Higher Education launched the POL-on system using financial 

support from the European Union and the technical assistance of three private companies. POL-on is 

an integrated information system for higher education. It supports the work of the Ministry of Science 

and Higher Education, as well as other ministries and institutions of science and higher education. Its 

main task is to create a database of scientific institutions, universities and Polish science. Information 

collected through the system supports the decision-making process of the Ministry of Science and 

Higher Education regarding Polish universities and research units. Certain parts of datasets collected 

by the system are made available to the public. 

In Argentina, the Ministry of Science, Technology and Productive Innovation uses SICYTAR (Sistema 

de Información de Ciencia y Tecnología Argentino) to evaluate and assess STI policy initiatives, project 

teams and individual researchers. The system aggregates several databases, covering researchers’ 

curriculum vitae; funded research and development (R&D) projects; information on public and private 

institutions performing R&D activities in Argentina; and, information on large research equipment. 
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Current Research Information Systems 

In Estonia, a number of stakeholders launched the Estonian Research Information System (ETIS). 

These include the Ministry of Education and Research, the Estonian Science Foundation, the Scientific 

Competence Council, public organisations that perform RD&I, and the Archimedes Foundation. Based 

on multi-partner co-operation, ETIS serves as a large-scale national digital system that unites data 

management efforts. HEIs use ETIS as an internal system for research information management and 

as a tool to showcase their research. Public funders use the system to evaluate and process grant 

applications. ETIS is also used in national research assessments and evaluations by providing data on 

STI indicators, e.g. R&D revenue per research and teaching staff member and the percentage of women 

among scientists. 

In the Netherlands, the National Academic Research and Collaborations Information System (NARCIS) 

collects data from multiple sources. These include funder databases, CRISs, institutional repositories 

of research performers and the Internet. Data on research outputs, projects, funding, human resources 

and policy documents collected by NARCIS inform policy makers on research in the Netherlands and 

monitor the openness of access to data. Funders also use the system to identify research gaps to improve 

resource planning. NARCIS also serves as an important research directory, providing researchers, journalists, 

and the domestic and international public with information on the status and outputs of Dutch science. 

In Norway, the research-reporting tool Cristin collects information from research institutions, the Norwegian 

Centre for Research Data and ethics committees. Cristin serves as a resource for the performance-based 

funding model of the Ministry of Research and Education. It provides numerous users from government, 

industry, academia and civil society with verified information on the current status of Norwegian research. 

Intelligent systems 

In Japan, the National Graduate Institute for Policy Studies designed the SciREX Policymaking Intelligent 

Assistance System (SPIAS) to strengthen national evidence-informed STI policy making. SPIAS uses 

big data and semantic technologies to process data on research outputs and impacts, funding, R&D-

performing organisations and research projects, with a view to mapping the socio-economic impacts of 

research. SPIAS has been used to analyse leading Japanese scientists’ performance before and after 

receiving grants from the Japan Science and Technology Agency. It has also been used to assess the 

impact of regenerative medicine research in Japan, and to map emerging technologies. 

In Spain, Corpus Viewer, developed by the State Secretariat for Information Society and Digital 

Agenda, processes and analyses large volumes of textual information using natural language 

processing techniques. Policy makers use results to monitor and evaluate public programmes, and to 

formulate science and innovation policy initiatives. The system is restricted to government officials. 

 

Box 7.3. Range of typical goals of DSIP initiatives 

Optimisation of administrative workflows. Digital tools can help streamline potentially burdensome 

administrative procedures and deliver significant efficiency gains within agencies. These benefits can 

also extend to those using public agencies’ services, including researchers or organisations applying 

for (or reporting on) the use of research grants. For example, they can use interoperability identifiers to 

link their research profiles to grant applications. As the digital gateway to the Estonian research system, 

ETIS (Box 7.2) incorporates tools for grant application submissions and research reporting, thereby 

streamlining administrative workflows at Estonian research-performing organisations.  
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Improved policy formulation and design. Digitalisation offers new opportunities for more granular and 

timely data analysis to support STI policy; this should improve the allocation of research and innovation funding. 

Furthermore, DSIP systems often link data collected by different agencies. In this way, they provide greater 

context to policy problems and interventions, and offer possibilities for more integrated interagency policy 

design at the research or innovation system level. To give a country example: the Japanese Ministry of 

Education, Culture, Sports, Science and Technology and the National Institute of Science and Technology Policy 

have launched the SciREX data and information infrastructure to improve STI policy formulation and design. 

The system provides datasets to support STI policy studies. It aims to improve the accountability and transparency 

of public investments in R&D and strengthen the methodological frameworks used in policy evaluations. 

Support of performance monitoring and management. DSIP systems offer the possibility of collating 

real-time policy output data. For example, in Colombia, the SCIENTI Technological Platform has developed 

STI indicators and metrics that support the monitoring and assessments of government-funded research. 

DSIP systems can allow more agile short-term policy adjustments. They can improve insights into the policy 

process for accountability and learning in the medium to long term, so that evaluation becomes an open and 

continuous process. Policy makers and delivery agencies can consider the circumstances that make it 

possible and meaningful to use other digitally enabled data resources, such as altmetrics of research outputs 

and impacts (Priem et al., 2010; Sugimoto and Larivière, 2016). They can also rely on other data collection 

approaches (e.g. web scraping) to complement and enhance existing approaches to assessing research.  

Anticipatory intelligence. Technologies like big data analytics can help detect patterns in data that 

could be useful for policy, e.g. emerging research areas, technologies, industries and policy issues. 

Digital technologies can also support short-term forecasting of policy issues and contribute to strategic 

policy planning (Choi et al., 2011; Zhang et al., 2016; Peng et al., 2017; Yoo and Won, 2018). For instance, 

DSIP systems could identify labour demand in specific STI fields and address potential mismatches on 

the supply side of the labour market. In the Russian Federation, for example, the Institute for Statistical 

Studies and Economics of Knowledge of the National Research University Higher School of Economics, 

has developed the iFORA system to support foresight studies. Underpinned by advanced computational 

techniques, iFORA analyses large volumes of administrative data and web data to provide insights on 

STI breakthroughs, weak signals of change, centres of excellence and emerging technologies.  

General information discovery. DSIP systems often include data on a wide range of inputs, outputs 

and activities. Policy makers and funders can use these data to identify leading experts in a given field 

(e.g. identify reviewers for project proposals), as well as centres of excellence (Guo et al., 2012; Sateli 

et al., 2016). This kind of information also helps researchers and entrepreneurs to identify new partners for 

collaboration and commercialisation. For example, the Ministry of Business, Innovation and Employment 

of New Zealand has developed the New Zealand Research Information System (NZRIS). It aims to 

raise the quality of RD&I data and improve information discovery on issues related to research and 

innovation. The NZRIS provides information on levels of public investments in different research areas, 

research collaboration networks, and leading researchers and organisations. In doing so, it aims to 

accelerate research commercialisation and foster close partnerships between academia and industry. 

Promotion of inclusiveness in STI policy agenda setting. DSIP systems can contribute to debate 

with stakeholders on policy options by providing detailed information about a policy problem in an 

accessible way, e.g. through interactive data visualisation. The increased transparency provided by 

DSIP systems can empower citizens by providing them with knowledge about the nature and impacts 

of ongoing research and innovation. Thus, DSIP may be instrumental in building trust and securing 

long-term sustainable funding for research and innovation. Costa Rica, for example, has launched the 

Hipatia platform to help citizens better understand national scientific capabilities and the impacts  

of publicly funded research. Hipatia is an integrated platform created atop a variety of Costa Rican 

administrative databases. As a “one-stop shop” for research information in Costa Rica, Hipatia aims to 

improve the transparency and accountability of publicly funded research.  

Source: Based on OECD (forthcoming a), Digital Science and Innovation Policy and Governance. 
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Realising the potential of DSIP involves overcoming several possible barriers. In their responses to the 

OECD questionnaire, DSIP administrators identified data quality, interoperability, sustainable funding and data 

protection regulations as the biggest challenges facing their initiatives (Figure 7.2). Other challenges cited 

less often were access to data, the availability of digital skills and trust in digital technologies. Policy makers 

wishing to promote DSIP face further systemic challenges. These include overseeing fragmented DSIP 

efforts and multiple (often weakly co-ordinated) initiatives (see Box 7.4, which summarises a case study of 

Norway’s DSIP ecosystem); ensuring responsible use of data generated for other purposes; and balancing 

the benefits and risks of private sector involvement in providing DSIP data, components and services. 

Figure 7.2. Main challenges facing DSIP initiatives 

Percentage of surveyed DSIP systems 

 

Notes: DSIP = digital science and innovation policy. Questionnaire respondents could select more than one challenge facing their DSIP initiatives. 

Source: OECD survey of administrators of 39 DSIP systems in OECD countries and partner economies. 

StatLink 2 https://doi.org/10.1787/888934076077 

Box 7.4. OECD case study of Norway’s DSIP landscape 

The Norwegian Ministry of Education and Research requested the OECD Secretariat to conduct a case 

study of the Norwegian landscape for DSIP. This study took place in the context of the OECD DSIP 

project. It involved an extensive literature review of policy issues and technological trends. The authors 

also analysed policy documents and reports related to Norway’s DSIP landscape. In addition, they 

interviewed key stakeholders during a one-week mission to Norway in April 2018. Interviewees included 

data providers, regulators, administrators, and developers of digital infrastructures and their users.  

The case study describes Norway’s DSIP landscape, including its initiatives and main actors, the objectives 

followed and their outcomes, the level of devoted resources and future development perspectives. It 

shows that Norway has built substantial capabilities in preservation, access and use of comprehensive 

administrative datasets that could power analytical solutions used in DSIP systems.  
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The DSIP landscape in Norway comprises a number of digital infrastructures that collect, preserve and 

provide access to data on research and innovation activities. These include a digital infrastructure for 

sharing datasets across Norwegian government agencies; databases of Research Council Norway and 

Innovation Norway that include data on research inputs and outputs; and Health&Care21 research and 

innovation monitor, which aims to facilitate decision making on healthcare research.  

One of the key elements of the Norwegian DSIP landscape is Cristin, Norway’s national CRIS. Cristin 

is interoperable with several external digital systems managed by Norwegian government agencies and 

effectively serves as a major data hub on Norwegian research. Cristin provides the evidence base on 

which the Norwegian government performs its assessments of research performance. Apart from 

government bodies, all higher education institutes, research hospitals and public research institutions 

that receive public funding use the system to support research and strategic planning. 

A distinguishing feature of Norway is its trust-based social consensus. Individuals and organisations 

are willing to share data about themselves with the government to improve the quality of policy making 

and to create more value for citizens. High levels of trust, accountability and transparency in the Norwegian 

government, combined with a consensus-based culture of decision making, create an excellent environment 

for developing DSIP initiatives.  

Nevertheless, there is considerable fragmentation of efforts around DSIP. For example, several Norwegian 

ministries and agencies are experimenting with ML algorithms. They wish to extract actionable knowledge 

from fragmented datasets to support the development of statistical indicators. These, in turn, could help 

steer science and innovation policy initiatives in a more effective and efficient way. In some cases, these 

experiments – often in co-operation with external providers – have already helped design early versions 

of DSIP solutions. However, such efforts could benefit from a more systematic approach, involving greater 

co-ordination across government. 

Source: OECD (forthcoming b), “OECD case study of Norway’s digital science and innovation policy and governance landscape”. 

Interoperability 

Research and innovation activities, by their nature, have high levels of pervasiveness and are shaped by 

a large number of stakeholders. As a result, data on the incidence and impacts of research and innovation 

are dispersed across a variety of public and private databases and the web. Harvesting these datasets from 

external sources requires the development of common data formats and other interoperability enablers 

including, but not limited to, application programming interfaces (APIs), ontologies, protocols and UPPIs.  

An integrated and interoperable system leads to a considerable reduction in the reporting and compliance 

burden, freeing up time and money for research and innovation. In addition to the reduced administrative 

burden, interoperability allows quicker, cheaper and more accurate data matching. This, in turn, makes 

existing analyses less costly and more robust, and facilitates new analyses. Interoperability can produce 

more timely and detailed insights, enabling more responsive and tailored policy design. Furthermore, the 

gradual emergence of internationally recognised identifiers makes it easier to track the impacts of research 

and innovation activities across borders, and map international partnerships. 

Interoperability raises several types of questions. On a technical level, policy makers must ask what kind 

of digital system can be put in place to make existing and new data interoperable. On a semantic level, 

they must grapple with metadata and language issues. With respect to governance, they must reflect on 

how all stakeholders can be aligned to agree upon an interoperability system. A specific issue concerns the 

role and effectiveness of data standards, particularly in a mixed ecosystem containing both legacy and new 
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systems. In this regard, some DSIP systems use national identifications (IDs) – e.g. business registration 

and social security numbers – as well as country-specific IDs for researchers (Figure 7.3).  

Figure 7.3. Use of interoperability enablers in DSIP systems 

Percentage of surveyed DSIP systems 

 

Notes: DSIP = digital science and innovation policy; ORCID = Open Researcher and Contributor ID; CERIF = Common European Research 

Information Format; CASRAI = Consortia Advancing Standards in Research Administration Information. Questionnaire respondents could select 

more than one type of interoperability enabler used in their DSIP initiatives.  

Source: OECD survey of administrators of 39 DSIP systems in OECD countries and partner economies. 

StatLink 2 https://doi.org/10.1787/888934076096 

Table 7.1. Examples of interoperability enablers in DSIP and related systems 

Type Examples 

UPPIs for STI actors 

● Open Researcher and Contributor ID (ORCID) 

● Digital object identifier (DOI) 

● Global Research Identifier Database (GRID) 

● International Standard Name Identifier (ISNI) 

● Ringgold ID 

Author IDs generated by publishers/indexers 
● Researcher ID 

● Scopus Author ID 

Management standards for data about STI 

● Common European Research Information Format (CERIF) 

● Consortia Advancing Standards in Research Administration Information (CASRAI) Dictionary 

● VIVO ontology 

Protocols ● Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) 

Source: OECD (2018), OECD Science, Technology and Innovation Outlook 2018: Adapting to Technological and Societal Disruption, 

https://doi.org/10.1787/sti_in_outlook-2018-en.  

In recent years, attempts have been made to establish international standards and vocabularies to improve 

the international interoperability of DSIP infrastructures (Table 7.1). These include UPPIs, which assign a 

standardised code unique to each research entity, persistent over time and pervasive across various datasets. 

Box 7.5 sets out the desirable characteristics for successful UPPIs. Some UPPIs exist as an integral part of, 

or support for, commercial products such as publication/citation databases, research information systems, 

supply-chain management services, etc. Others exist solely to provide a system of identifiers for wide adoption 
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and use. One example is ORCID, which aims to resolve name ambiguity in scientific research by developing 

unique identifiers for individual researchers. These systems provide a simple register of UPPIs and basic 

associated identity information (e.g. name and organisational affiliation for individuals, name and location 

for organisations). In addition, they often directly include, or incorporate links to, a wide range of further 

information. For example, ORCID records allow details of education, employment, funding and research 

works to be added manually or brought in by linking to other systems including Scopus and ResearcherID. 

Box 7.5. Desirable characteristics for UPPIs 

McMurry, Winfree and Haendel (6 July 2017) propose various desirable characteristics for identifiers. 

These have been adapted here for the specific use case under consideration (identifying individuals 

and organisations): 

 Defined. The identifiers should follow a formal pattern (regular expression) that will also determine 

the total set of assignable identifiers; this facilitates validation and use (including by machines). 

 Persistent, stable. The identifier should stay the same over time, wherever possible, and should 

never be deleted; this avoids difficulty locating records. In support of this, it is not recommended to 

include unnecessary detail or information liable to change in the identifier format chosen (e.g. by 

using a random alphanumeric code of a fixed length and structure). 

 Unambiguous. The identifier must relate to no more than one entity locally; to avoid confusion 

between different entities. The identifier format chosen should seek to avoid ambiguity. For example, 

if an alphanumeric identifier is used, either the number zero or letter “o” should be allowed as 

these are easily confused by users. 

 Unique. One entity should ideally be associated with no more than one identifier (and identifiers 

should never be “recycled” to apply to another entity). 

 Version-documented. Where important changes occur, these should be clearly logged and, if 

necessary, new identifiers issued. 

 Web-friendly. The id should avoid use of characters that perform specific functions html and 

exchange formats (e.g. XML) such as “:”, “/”, “.” to make the identifiers easier to use, search, etc. 

 Web-resolvable. The identifier must be resolvable to a web address where the data or information 

about the entity can be accessed. In practice, this means the identifier should consist of a uniform 

resource identifier (URI) pattern (e.g. http://orcid.org/) and a local id relating to the specific record 

(e.g. 0000-0002-2040-1464). When used together, the URI and local id create a resolvable web 

address (e.g. http://orcid.org/0000-0002-2040-1464). This allows the identifier to be easily checked 

to ensure it relates to an actual record and that the record relates to the correct entity. 

 Free to assign. The identifier should ideally be assigned at no costs; this reduces barriers  

to adoption. 

 Open access (OA) and use. The identifier appropriate metadata (e.g. the name of the entity to 

which it relates) should be able to be transparently referenced and actioned (e.g. in a public 

index or search) anywhere, by anyone, and for any reason; this enables integration on the basis 

of practical usefulness. 

 Documented. The identifier scheme, its operation, etc. should be clearly documented; this 

enables users to understand the system and encourages consistent use. Documented privacy 

and dispute resolution policies are also important factors. 

Source: McMurry, Winfree and Haendel (6 July 2017), “Bad identifiers are the potholes of the information superhighway: Take-home lessons 

for researchers”, http://blogs.plos.org/biologue/2017/07/06/bad-identifiers-potholes-of-information-superhighway/. 
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As an UPPI system gains traction there may be a “network effect”, whereby each additional registrant 

increases the value of the system to all users. Eventually the UPPI system may become a generally 

expected way for entities to unambiguously identify each other. This results in strong incentives to join for 

those not yet registered.  

Besides UPPIs, APIs have become an industry standard for integrating data. They enable machine-to-machine 

interactions and data exchanges. Within a framework of digital government initiatives, several countries have 

started to proliferate APIs across the whole landscape of government websites and databases, improving 

data reuse. Improvements in data access to administrative datasets have positive impacts on the functionality 

and reliability of the results of analyses delivered by DSIP systems. 

Aside from government agencies and other public funders, RD&I-performing organisations store a significant 

share of research and innovation data. The Common European Research Information Format (CERIF) and 

metadata formats by Consortia Advancing Standards in Research Administration Information (CASRAI) 

were originally designed to serve the needs of HEIs in data management. Some DSIP systems use them 

to harvest curated data from research institutes and directly apply them in analysis (Box 7.6). 

Box 7.6. Management standards for data about STI 

CERIF 

CERIF is a standard maintained by the international not-for-profit organisation EuroCRIS since 2002. It 

ensures a uniform management and exchange of research information by providing data models (entities, 

attributes and relationships), exchange models, metadata models and controlled vocabulary terms. CERIF 

covers related information on publications, projects, organisations, equipment, events, individuals, language, 

facilities, patents, products and services (Jörg et al., 2012). An important feature of CERIF is the provision 

of connectivity among different metadata standards by enabling conversion of one standard into another 

(Jeffery and Asserson, 2016).  

CASRAI 

CASRAI is an international not-for-profit organisation founded in 2006. It helps key stakeholders in data 

curation to develop standard agreements for making research information exchange more efficient. 

Agreements entail standards for managing the full data cycle. Implementation of CASRAI standards 

can help organisations to improve data quality, interoperability and accessibility. They do this by filtering 

information (agreements on report format templates) and disambiguating it (agreements on shared 

glossaries). CASRAI is mainly used in Europe, the United States and Canada; the rest of the world tends 

to use other standards. Even still, a large number of digital tools in one way or another use CASRAI 

standards. For example, ORCID uses CASRAI research-output report formats and glossaries, and 

Snowball Metrics uses CASRAI standard information agreements (CASRAI, 2016).  

VIVO 

Semantic ontologies can also help address the problem of interoperability in DSIP infrastructures. 

Launched in 2003 by Cornell University, the VIVO project aims to develop an open-source software and 

an ontology for research information enabling federated search for research partners. The VIVO ontology 

includes information on organisations, researchers, activities and their relationships. It builds linkages 

among various data items to provide a consistent and connected perspective on research and enables 

more effective data reuse. In a similar vein to VIVO, other initiatives like Semantic Web for Research 

Communities and Advanced Knowledge Technologies also provide ontologies for scientific research. 

Source: OECD (forthcoming a), Digital Science and Innovation Policy and Governance. 
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Using DSIP infrastructures in research assessment 

In recent years, research funders, research-performing institutes and researchers have faced increasing 

pressure to demonstrate the value and impact of research. Budgetary discussions implicitly or explicitly 

compare the value of the marginal dollar placed in science versus other policy areas. All policy areas try 

to make their best possible case, and data-based assessment has become a core component of evidence-

based policy and strategy discussions. As a particular class of evidence-based assessment, data-driven 

assessments are responding to the complexity of research and innovation systems, and the need for more 

efficient and faster decisions. They use the opportunity provided by the digital trace of many scientific 

research activities, as well as growing data processing capacities.  

However, there are significant risks that the procedures of data-based assessment fail to meet their intended 

objectives. A key risk of data-based systems is giving up control over what drives assessment. Decisions, 

for example, are based on what data are available in a quantitative, apparently compact fashion. Data-

based assessment can provide a valid perspective only as long as available data encompass all the 

relevant parts of the phenomena of interest. Two steps can address this concern. First, policy makers need 

a broad sense of what science actors of different types do and the extent to which existing data capture 

these activities and their outcomes. Second, they need to identify to what extent such data can be actually 

deployed for assessment. This will depend on their accessibility and interoperability with other data sources. 

The level of analysis at which impact is examined is critical. One of the great advantages of digitalisation 

is the technical ability to operate with large, linked databases at very fine levels of granularity so that 

information is not necessarily lost in the process of aggregation. This micro perspective has, however, 

somewhat contributed to a loss of perspective in terms of what can be concluded from inferences in such 

data. One prominent example of a disconnect between data users and producers relates to the confusion 

between using data to assess features in the performance of individual researchers, their institutions and 

the country or broader area as a whole, as highlighted in Figure 7.4. For example, while the journal Impact 

Factor was born out of the need to inform librarians’ decisions concerning what titles to acquire and store, 

over time this became a surrogate measure used to assess the quality of individual researchers and their 

research outputs. Despite extensive academic discussion of the limitations of journal-based metrics (Moed 

et al., 2012), these continue to be widely used. Such misuses of data have generated calls for concerted 

efforts to create an open, sound and consistent system for measuring all activities that contribute to 

academic productivity.  

Figure 7.4. Trade-offs between the micro and macro levels of data analysis and indicators 

 

Source: OECD (forthcoming a), Digital Science and Innovation Policy and Governance.  
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dimensions of research activity and interaction might be represented digitally. This can be described as 

the “promise of altmetrics”. Some argue the emergence of web-based new data sources, especially those 

generated within online social media platforms, can provide timelier insights into relevant and hitherto 

unknown dimensions (Priem et al., 2010).  

It has been argued that altmetrics could support the assessment of increasingly important, non-traditional 

scholarly products like datasets and software, which are under-represented in the citation indices frequently 

used for assessment. Altmetrics could also reward impacts on wider audiences outside the publishing core, 

such as practitioners or the public in general. The altmetrics movement promotes the use of metrics generated 

from social media platforms as a source of evidence of research impact broader and timelier than citations. 

Altmetrics have also been advanced as part of the infrastructure required to facilitate open science, and 

as an aid to filtering fast-growing amounts of information outside or at the margins of traditional peer-review 

mechanisms. However, as with more traditional metrics, such as citation counts, questions remain over 

the extent to which altmetrics qualify as signals of research impact.  

More than half of the DSIP systems surveyed play a role in research assessment. Nearly 90% collect 

information on research outputs and more than one-third gather information on research impacts (Figure 7.5). 

Some, like the Cristin system in Norway, the Lattes Platform in Brazil and the METIS system in the 

Netherlands, are the primary sources of data for national research assessments. Few use altmetrics in 

their research assessments. 

Figure 7.5. Types of information harnessed for DSIP systems 

Percentage of surveyed DSIP systems 

 

Notes: DSIP = digital science and innovation policy; RD&I = research, development and innovation. Questionnaire respondents could select 

more than one type of information harnessed by their DSIP initiatives. 

Source: OECD survey of administrators of 39 DSIP systems in OECD countries and partner economies. 

StatLink 2 https://doi.org/10.1787/888934076115 
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The private sector exerts manifold impacts on the development of DSIP initiatives. DSIP systems can 

potentially use digital products and services designed by the private sector as building blocks. Essentially, 

they can extend the functionality and increase the value of DSIP systems for their stakeholders. The private 

sector designs technological architectures, develops digital tools for data management and provides consulting 

services related to launching and maintaining digital infrastructures. However, co-operation between the 

public and private sectors is multidimensional. It is not confined to the purchase of off-the-shelf solutions; 

there is also considerable co-operation in developing new solutions. For instance, administrators of the 

Flanders Research Space DSIP system are co-operating with IBM to develop a web-scraping tool that 

retrieves information on research activities scattered across the web.  

The large academic publishers, Elsevier and Holtzbrinck Publishing Group, together with the analytics firm, 

Clarivate Analytics, are particularly active. They are developing and bundling a mix of products and services 

into platforms that mimic many features of fully fledged DSIP systems (Figure 7.6 shows the example of 

Elsevier). Several products developed by these firms, including bibliographic databases, unique identifiers 

and organisational CRIS (Box 7.2), are often key components in governments’ DSIP systems.  

Figure 7.6. Interoperability within Elsevier’s portfolio of in-house digital products 

 

Source: OECD (forthcoming a), Digital Science and Innovation Policy and Governance.  
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In addition, digital giants like Alphabet and Microsoft, and national technology companies such as Baidu 

(People’s Republic of China) and Naver (Korea) have all designed platforms to search academic outputs. 

The impact of these companies on the digitalisation of science and innovation policy is limited. However, 

given their coverage of information on research outputs, these platforms could become key elements in 

national DSIP systems. For instance, the Academic Knowledge API of Microsoft Academic Graph enables 

the retrieval of information on publications, citations, contributors, institutions, fields of study, journals and 

conferences (API, n.d.; Microsoft, n.d.). Developers of DSIP systems can use these data for further analysis, 

which could spark competition with other established commercial databases of bibliographic information 

(such as Scopus). Academic search engines (Google Scholar, Microsoft Academic, Baidu Scholar and Naver 

Academic) could collect information on research publications and citations. This could potentially support 

research assessments and international benchmarking of research participants, including university rankings 

(Daraio and Bonaccorsi, 2017; Kousha, Thelwall and Abdoli, 2018). 

Another group of firms active in the DSIP area are providers of research administration tools for public funders 

and research-performing organisations. These tools provide the evidence base for national research assessments 

and support decisions on allocation of public funding. Some of these companies are involved in consultancy 

projects to support evidence-informed science and innovation policy making. Science-Metrix, a subsidiary of 

the Canadian research information management firm 1Science Inc., is a case in point. It was commissioned 

in 2018 to develop methods and indicators of research and innovation activities for the US National Science 

Foundation (Côté et al., 2018). 

Harnessing these private sector developments for use in public DSIP systems has many potential benefits. 

Solutions can be implemented quickly and at an agreed cost, sparing the public sector the need to develop 

the necessary in-house skills beforehand. Private companies can also promote interoperability through 

their standards and products, which can expand the scope and scale of data within a DSIP system. But 

there are also risks. For example, outsourcing data management activities to the private sector may result 

in a loss of control over the future development of DSIP systems. In addition, reliance on proprietary 

products and services may lead to discriminatory access to data, even if these concern research activities 

funded by the public sector. Finally, the public sector’s adoption of commercial standards for metrics may 

drive the emergence of private platforms exhibiting network effects that are difficult to contest. 

Charities and not-for-profit organisations also contribute to DSIP, as shown above in the discussion of 

interoperability enablers. These organisations can also directly fund and design DSIP solutions. For 

instance, the Alfred P. Sloan Foundation has financially supported projects to collect systematic evidence 

on impacts of publicly funded research (e.g. ETOILE, UMETRICS), to provide free access and sharing of 

research outputs (e.g. arXiv.org, FORCE11, Impactstory) and to aid data disambiguation (improvement of 

citations, development of unique identifiers). In another example, an Australian-based not-for-profit social 

enterprise, Cambia, in co-operation with Queensland University of Technology, has launched the Lens, an 

open platform for “innovation cartography”. The platform aggregates data from databases of several national 

and international patent offices and scholarly datasets including PubMed, Crossref and Microsoft Academic 

to provide OA to disambiguated and linked patent information (Lens, n.d.). A number of add-on tools and 

services provide actionable intelligence that decision makers can use. For example, policy makers can use 

Lens PatCite to identify, disambiguate and link scientific articles cited in patents (Lens PatCite, n.d.).  

Due to their free pricing and high levels of functionality, digital solutions designed by not-for-profit organisations 

are widely adopted by public organisations, as well as commercial firms. Indeed, in many cases, they serve 

as important elements of commercial DSIP solutions, enhancing their functionality and contributing to their 

interoperability. Administrators of several surveyed DSIP systems opted mostly for open software and free 

digital solutions to better ensure the financial sustainability of their operations and to mitigate the risks of 

vendor lock-ins.  
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Conclusion 

The digital transformation of STI policy and its evidence base is still in its early stages. This means STI 

policy makers can take an active stance in shaping DSIP ecosystems to fit their needs. This will require 

strategic co-operation, through significant interagency co-ordination and sharing of resources (such as 

standard digital identifiers), and a coherent policy framework for data sharing and reuse in the public sector. 

Since several government ministries and agencies formulate science and innovation policy, DSIP ecosystems 

should be founded on the principles of co-design, co-creation and co-governance (OECD, 2018). 

This chapter has highlighted some of the challenges facing DSIP. Interoperability remains a major barrier, 

despite the recent proliferation of identifiers, standards and protocols. There is the potential opportunity for 

policymakers to influence the development of international UPPI systems in terms of target populations, 

information captured, compatibility with statistical systems, and especially adoption both by entities and by 

potential users. In particular, international efforts related to data documentation and the development of 

standards for metadata could be consolidated to improve data interoperability. 

DSIP systems can help broaden the evidence base on which research is assessed by, for example, 

incorporating altmetrics. They can also empower a broad group of stakeholders to participate more actively 

in the formulation and delivery of science and innovation policy. However, there is also the danger that 

these systems reinforce existing data misuses. DSIP systems should uphold and endorse recent initiatives 

that promote best practices in the responsible use of data. These include the San Francisco Declaration 

on Research Assessment (ASCB, n.d.) and Leiden Manifesto (Hicks et al., 2015).  

Finally, governments can usefully co-operate with the private and not-for-profit sectors in developing and 

operating DSIP systems. However, they should ensure public data remains outside of “walled gardens” and 

open for others to readily access and reuse. They should also avoid vendor lock-ins, deploying systems 

that are open and agile. In a fast-changing environment, this will provide governments with greater flexibility 

to adopt new technologies and incorporate unexploited data sources in their DSIP systems.  

References 

API (n.d.), “Academic knowledge”, webpage, https://docs.microsoft.com/en-us/azure/cognitive-

services/academic-knowledge/home (accessed 16 July 2018). 

ASCB (n.d.), “San Francisco Declaration on Research Assessment”, webpage, www.ascb.org/dora 

(accessed 18 August 2016). 

Bauer, M.W. and A. Suerdem (2016), “Relating ‘science culture’ and innovation”, presentation at the 

OECD Blue Sky Forum on Science and Innovation Indicators, Ghent, 19-21 September. 

CASRAI (2016), “CASRAI Impacts – 10-year anniversary, Building bridges for research information 

users”, CASRAI. 

Choi, S. et al. (2011), “SAO network analysis of patents for technology trends identification: A case study of 

polymer electrolyte membrane technology in proton exchange membrane fuel cells”, Scientometrics, 

Vol. 88/3, Springer International Publishing, Cham, Switzerland, pp. 863-883, 

https://doi.org/10.1007/s11192-011-0420-z.  

Côté, G. et al. (2018), Bibliometrics and Patent Indicators for the Science and Engineering Indicators 

2018 – Technical Documentation, Science-Matrix, Montreal. 

Daraio, C. and A. Bonaccorsi (2017), “Beyond university rankings? Generating new indicators on 

universities by linking data in open platforms”, Journal of the Association for Information Science and 

Technology, Vol. 68/2, Wiley Online Library, pp. 508-529. 

 
 

https://docs.microsoft.com/en-us/azure/cognitive-services/academic-knowledge/home
https://docs.microsoft.com/en-us/azure/cognitive-services/academic-knowledge/home
http://www.ascb.org/dora
https://doi.org/10.1007/s11192-011-0420-z


7. THE DIGITALISATION OF SCIENCE AND INNOVATION POLICY  181 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

Edwards, M. and R. Siddhartha (2017), “Academic research in the 21st century: Maintaining scientific 

integrity in a climate of perverse incentives and hypercompetition”, Environmental Engineering 

Science, Vol. 34/1, Mary Ann Liebert Inc., pp. 51-61, 

http://online.liebertpub.com/doi/pdf/10.1089/ees.2016.0223.  

Gibson, E. et al. (2018), “Technology foresight: A bibliometric analysis to identify leading and emerging 

methods”, Foresight and STI Governance, Vol. 12/1, National Research University Higher School of 

Economics, Moscow, pp. 6-24. 

Guo, Y. et al. (2012), “Text mining of information resources to inform forecasting innovation pathways”, 

Technology Analysis & Strategic Management, Vol. 24/8, Routledge, London, pp. 843-861, 

https://doi.org/10.1080/09537325.2012.715491.  

Hicks, D. et al. (2015), “Bibliometrics: The Leiden manifesto for research metrics”, Nature, Vol. 520/7548, 

Nature Research, Springer, pp. 429-431, www.nature.com/news/bibliometrics-the-leiden-manifesto-

for-research-metrics-1.17351.  

Jeffery, K. and A. Asserson (2016), “Position paper: Why CERIF?”, presentation at smart descriptions 

and smarter vocabularies workshop, Amsterdam, 30 November-1 December, 

www.w3.org/2016/11/sdsvoc/SDSVoc16_paper_15.  

Johnson, R., O. Fernholz and M. Fosci (2016), “Text and data mining in higher education and public 

research. An analysis of case studies from the United Kingdom and France”, Association des 

directeurs et personnels de direction des bibliothèques universitaires et de la documentation, Paris, 

https://adbu.fr/competplug/uploads/2016/12/TDM-in-Public-Research-Final-Report-11-Dec-16.pdf.  

Jörg, B. et al. (2012), “CERIF 1.3 full data model (FDM): Introduction and specification”, 28 January, 

EuroCRIS, www.eurocris.org/Uploads/Web%20pages/CERIF-1.3/Specifications/CERIF1.3_FDM.pdf. 

Kayser, V. and K. Blind (2017), “Extending the knowledge base of foresight: The contribution of text 

mining”, Technological Forecasting and Social Change, Vol. 116C, Elsevier, Amsterdam, pp. 208-215. 

Kong, D. et al. (2017), “Using the data mining method to assess the innovation gap: A case of industrial 

robotics in a catching-up country”, Technological Forecasting and Social Change, Vol. 119, Elsevier, 

Amsterdam, pp. 80-97. 

Kousha, K., M. Thelwall and M. Abdoli (2018), “Can Microsoft Academic assess the early citation impact 

of in-press articles? A multi-discipline exploratory analysis, Journal of Informetrics, Vol. 12/2, 

arXiv:1802.07677, Cornell University, pp. 287-298. 

Lens (n.d.), “About the Lens”, webpage, https://about.lens.org/ (accessed 31 August 2018). 

Lens PatCite (n.d.), “Lens PatCite” webpage, www.lens.org/lens/patcite (accessed 31 August 2018). 

Mateos-Garcia, J. (6 April 2017), “We are building a formidable system for measuring science – but what 

about innovation?”, Nesta blog, www.nesta.org.uk/blog/we-are-building-a-formidable-system-for-

measuring-science-but-what-about-innovation/.  

McMurry, J., L. Winfree and M. Haendel (6 July 2017), “Bad identifiers are the potholes of the information 

superhighway: Take-home lessons for researchers”, PLOS Biologue Community blog, 

http://blogs.plos.org/biologue/2017/07/06/bad-identifiers-potholes-of-information-superhighway/.  

Microsoft (n.d.), “Microsoft Academic Graph”, webpage, www.microsoft.com/ (accessed 16 July 2018).   

Moed, H.F. et al. (2012), “Citation-based metrics are appropriate tools in journal assessment provided 

that they are accurate and used in an informed way”, Scientometrics, Vol. 92/2, Springer, pp. 367-376. 

OECD (forthcoming a), Digital Science and Innovation Policy and Governance, OECD Publishing, Paris. 

OECD (forthcoming b), “OECD case study of Norway’s digital science and innovation policy and 

governance landscape”, OECD Science, Technology and Innovation Policy Papers, OECD 

Publishing, Paris. 

OECD (2018), OECD Science, Technology and Innovation Outlook 2018: Adapting to Technological and 

Societal Disruption, OECD Publishing, Paris, https://doi.org/10.1787/sti_in_outlook-2018-en. 

http://online.liebertpub.com/doi/pdf/10.1089/ees.2016.0223
https://doi.org/10.1080/09537325.2012.715491
http://www.nature.com/news/bibliometrics-the-leiden-manifesto-for-research-metrics-1.17351
http://www.nature.com/news/bibliometrics-the-leiden-manifesto-for-research-metrics-1.17351
http://www.w3.org/2016/11/sdsvoc/SDSVoc16_paper_15
https://adbu.fr/competplug/uploads/2016/12/TDM-in-Public-Research-Final-Report-11-Dec-16.pdf
http://www.eurocris.org/Uploads/Web%20pages/CERIF-1.3/Specifications/CERIF1.3_FDM.pdf
https://about.lens.org/
http://www.lens.org/lens/patcite
http://www.nesta.org.uk/blog/we-are-building-a-formidable-system-for-measuring-science-but-what-about-innovation/
http://www.nesta.org.uk/blog/we-are-building-a-formidable-system-for-measuring-science-but-what-about-innovation/
http://blogs.plos.org/biologue/2017/07/06/bad-identifiers-potholes-of-information-superhighway/
http://www.microsoft.com/
https://doi.org/10.1787/sti_in_outlook-2018-en


182  7. THE DIGITALISATION OF SCIENCE AND INNOVATION POLICY 

THE DIGITALISATION OF SCIENCE, TECHNOLOGY AND INNOVATION © OECD 2020 
  

Park, H., J. Yoon and K. Kim (2013), “Using function-based patent analysis to identify potential 

application areas of technology for technology transfer”, Expert Systems with Applications, Vol. 40/13, 

Elsevier, Amsterdam, pp. 5260-5265. 

Peng, H. et al. (2017), “Forecasting potential sensor applications of triboelectric nanogenerators through 

tech mining”, Nano Energy, Vol. 35, pp. 358-369, Elsevier, Amsterdam, 

https://doi.org/10.1016/j.nanoen.2017.04.006. 

Priem, J. et al. (2010), “Altmetrics: A Manifesto”, webpage, http://altmetrics.org/manifesto (accessed 

5 February 2017). 

Sateli, B. et al. (2016), “Semantic user profiles: Learning scholars’ competences by analyzing their 

publications”, in A. González-Beltrán, F. Osborne and S. Peroni (eds.), Semantics, Analytics, 

Visualization. Enhancing Scholarly Data, SAVE-SD 2016, Lecture Notes in Computer Science,  

Vol. 9792, Springer, Cham, Switzerland, https://doi.org/10.1007/978-3-319-53637-8_12.  

Shapira, P. and J. Youtie (2006), “Measures for knowledge-based economic development: Introducing 

data mining techniques to economic developers in the state of Georgia and the US South”, 

Technological Forecasting and Social Change, Vol. 73/8, Elsevier, Amsterdam, pp. 950-965. 

Sugimoto, C. and V. Larivière (2016), “Social media indicators as indicators of broader impact”, 

presentation at the OECD Blue Sky Forum on Science and Innovation Indicators, Ghent,  

18 September, www.slideshare.net/innovationoecd/sugimoto-social-media-metrics-as-indicators-of-

broader-impact.  

Wolfram, D. (2016), “Bibliometrics, information retrieval and natural language processing: Natural 

synergies to support digital library research”, in Proceedings of the Joint Workshop on Bibliometric-

enhanced Information Retrieval and Natural Language Processing for Digital Libraries, ACL 

Anthology, www.aclweb.org/anthology/.  

Yoo, S.H. and D. Won (2018), “Simulation of weak signals of nanotechnology innovation in complex 

system”, Sustainability, Vol. 10/2/, MDPI, Basel, pp. 486, https://doi.org/10.3390/su10020486.  

Yoon, J. and K. Kim (2012), “Detecting signals of new technological opportunities using semantic patent 

analysis and outlier detection”, Scientometrics, Vol. 90/2, Springer, pp. 445-461. 

Yoon, J., H. Park and K. Kim (2013), “Identifying technological competition trends for R&D planning using 

dynamic patent maps: SAO-based content analysis”, Scientometrics, Vol. 94/1, Springer, pp. 313-331. 

Zhang, Y. et al. (2016), “Technology roadmapping for competitive technical intelligence”, Technological 

Forecasting and Social Change, Vol. 110, Elsevier, Amsterdam, pp. 175-186, 

https://doi.org/10.1016/j.techfore.2015.11.029. 

https://doi.org/10.1016/j.nanoen.2017.04.006
https://doi.org/10.1007/978-3-319-53637-8_12
http://www.slideshare.net/innovationoecd/sugimoto-social-media-metrics-as-indicators-of-broader-impact
http://www.slideshare.net/innovationoecd/sugimoto-social-media-metrics-as-indicators-of-broader-impact
http://www.aclweb.org/anthology/
https://doi.org/10.3390/su10020486
https://doi.org/10.1016/j.techfore.2015.11.029


The Digitalisation of Science, 
Technology and Innovation
KEY DEVELOPMENTS AND POLICIES

The Digitalisation of Science, Technology 
and Innovation
KEY DEVELOPMENTS AND POLICIES

This report examines digitalisation’s effects on science, technology and innovation and the associated 
consequences for policy. In varied and far‑reaching ways, digital technologies are changing how scientists 
work, collaborate and publish. While examining these developments, this book also assesses the effects 
of digitalisation on longstanding policy themes, from access to publicly funded research data, to the diffusion 
of technology and its absorption by firms. New and emerging topics are also explored. These include 
the roles of artificial intelligence and blockchain in science and production, using digital technology to draw 
on the collective intelligence of the scientific community, advances in the digitalisation of biotechnology, 
and possible "dark sides" of digitalisation.

ISBN 978-92-64-97802-7

Consult this publication on line at https://doi.org/10.1787/b9e4a2c0-en.

This work is published on the OECD iLibrary, which gathers all OECD books, periodicals and statistical databases. 
Visit www.oecd-ilibrary.org for more information.

9HSTCQE*jhiach+

T
h

e D
ig

italisatio
n o

f S
cience, Tech

no
lo

g
y an

d
 In

novatio
n   K

E
Y

 D
E

V
E

LO
P

M
E

N
T

S
 A

N
D

 P
O

L
IC

IE
S


	Foreword
	Acknowledgements
	Acronyms, abbreviations and units of measure
	Executive Summary
	Digitalisation and science
	Realising the untapped potential of digital technology in policy
	Digitalisation and innovation in firms
	Developing digital skills
	Committing to public sector research
	Building expertise in government

	1 An overview of key developments and policies
	Introduction
	Why does digitalisation matter?
	The broader context in which science, technology and innovation are digitalising

	Measuring the digitalisation of science and innovation
	Digitalisation, science and science policy
	Accessing scientific information
	Enhancing access to research data
	Broadening engagement with science
	Artificial intelligence for science
	Recent drivers of AI in science
	AI can also combine with robot systems to perform scientific research


	Digitalisation and innovation in firms
	Does innovation policy need to be adapted for the digital age?
	Ensuring access to data for innovation
	Providing the right support and incentives for innovation and entrepreneurship
	Ensuring that innovation ecosystems support competition
	Supporting collaboration for innovation


	Digitalisation and the next production revolution
	AI in production
	New materials and nanotechnology

	Developing digital skills
	Education and training systems must draw on information from all social partners
	New courses and curricula may be needed
	Lifelong learning must be an integral part of work


	Facilitating the diffusion of digital technologies and tools
	New digital technologies may make diffusion more difficult
	Institutions for diffusion can be effective, if well designed
	Technology diffusion institutions need realistic goals and time horizons


	Committing to public sector research
	Multidisciplinary research
	Public-private research partnerships

	Developing technology- and sector-specific capabilities in government
	Ensuring access to complementary infrastructures
	Improving digital security
	Examining intellectual property systems in light of digitalisation
	Optimising digital systems to strengthen science and innovation policies
	Ensuring interoperability in DSIP systems
	Using DSIP systems in research assessment
	The roles of the business sector in DSIP
	The outlook for DSIP systems

	Digitalisation in science and innovation: Possible “dark sides”
	Distributional effects and digitalisation of STI
	Complex systems and unmanageable machine ecologies
	Negative impacts on science from digitalisation
	Wider risks linked to digital technology

	The untapped potential of digital technology for STI policy
	Prediction markets for STI policy
	Prediction using human-machine combinations

	Blockchain for science, technology and innovation
	Using social media to spread innovation

	Conclusion
	References
	Notes

	2 How are science, technology  and innovation going digital?  The statistical evidence
	Introduction
	Science going digital
	Scientific research on digital technologies
	Scientific research and artificial intelligence
	Scientific production
	Public funding of scientific research on AI

	The science system and its contribution to the development of digital skills
	Scientific research enabled by digital technology
	Research paradigms and digitalisation
	Open science and digitalisation
	Open access to documents
	Open access to data and code
	Digitalisation and the broader impacts of science

	Looking ahead: Scientists’ perspectives on digitalisation and its impacts

	Technology and innovation going digital
	Development of digital technologies
	R&D in ICT industries and ICT-driven R&D

	Use of digital technology in business and the link between digitalisation and innovation

	Conclusion
	Digitalisation is everywhere in STI, but with varying depth and perspective
	Digitalisation is a “game-changer” for STI measurement and analysis

	References
	Notes

	3 Digital technology, the changing practice of science and implications for policy
	Introduction
	Accessing scientific information
	Enhanced access to research data
	Business models for data repositories
	Trust and transnational barriers
	Data privacy and ethics

	Broader engagement in science
	Promoting and steering open science systems in the digital world
	Conclusion
	References
	Note

	4 Digital innovation: Cross-sectoral dynamics and policy implications
	Introduction
	How is the digital transformation changing the innovation practices of firms?
	Data are a key input for innovation
	Services innovation enabled by digital technologies
	Innovation cycles are accelerating
	Innovation is becoming more collaborative

	The impacts of the digital transformation on innovation across sectors
	How are digital technologies integrating different sectors?
	Agri-food sector
	Automotive industry
	The retail sector

	Why are the implications of digital transformation likely to differ across sectors?
	Opportunities for innovation using digital technology
	Data needs and challenges for innovation
	Digital technology adoption and diffusion trends


	How should innovation policy be adapted to the digital age?
	Data access policies
	Policies to support innovation and entrepreneurship
	Ensure that policies are anticipatory, responsive and agile
	Support service innovation to lever the potential of digital technologies
	Adapt intellectual property systems
	Support development of generic digital technologies to respond to societal challenges

	Public research and education policies
	Promote the digitalisation of public research
	Build digital skills, including in the field of data analytics

	Foster competitive, collaborative and inclusive innovation ecosystems
	Ensure that innovation ecosystems remain competitive
	Support collaboration for innovation
	Support digital technology adoption by all firms, particularly SMEs
	Support social and territorial inclusiveness

	Cross-cutting policy principles
	Set national policies in view of developments in global markets
	Engage with citizens to address technology-related public concerns
	Adopt a sectoral approach to policy making when necessary


	Conclusion
	References
	Note

	5 Artificial intelligence,  digital technology and  advanced production
	Introduction
	Digital production technologies: Recent developments and policy implications
	Artificial intelligence in production
	Adopting AI in production: main challenges

	AI: Specific policies
	Governments can take steps to help firms generate value from their data
	Government agencies can co-ordinate and steward DSAs for AI purposes
	Governments can promote open data initiatives
	Technology itself may offer novel solutions to use data better for AI purposes
	Governments can also help resolve hardware constraints for AI applications

	Blockchain in production
	Blockchain: Possible policies

	3D printing
	3D printing: Specific policies
	Government can help develop the knowledge needed for 3D printing at the production frontier

	New materials and nanotechnology
	New materials and nanotechnology: Specific policies


	Selected cross-cutting policy issues
	Technology diffusion
	Diffusion in SMEs involves particular difficulties
	Diffusion requires conditions to support the creation of growth-oriented start-ups  and efficient allocation of economic resources
	Institutions for diffusion can also be effective if well designed
	Technology diffusion institutions need realistic goals and time horizons

	Policies on connectivity and data
	Restricting cross-border data flows should be avoided
	A prospective policy issue: Legal data portability rights for firms?
	A prospective policy issue: Frameworks to protect non-personal sensor data
	Increasing trust in cloud computing

	Developing digital skills
	How learning is delivered matters greatly
	Lifelong learning must be an integral part of work
	Digital technology will itself affect how skills are developed

	Participation in standards-setting processes
	Improving access to high-performance computing
	Intellectual property systems
	Public support for R&D
	An overarching research challenge relates to computation itself
	A need for more – and possibly different – research on AI
	Research and industry can often be linked more effectively


	Conclusion
	References
	Notes

	6 Digitalisation in the bioeconomy: Convergence for the bio-based industries
	Introduction
	The great convergence
	Why is convergence necessary?

	Overarching view: Greater integration of biotechnology with the engineering design cycle
	The test phase is the current bottleneck
	An integrated technology platform could unlock the potential
	Reproducibility is a continuing problem
	Reliability, predictability and reproducibility
	Automation can help address test-phase obstacles

	Industrial biotechnology and green chemistry convergence
	Industrial biotechnology converges with chemistry and with information technology/computing

	Data analysis and storage as bottlenecks
	Is DNA storage the answer?

	Blockchain for benefit sharing and protecting sensitive information
	Digital security
	Cloud computing
	Frontiers in bio-production
	Biofoundries
	3D bio-printing
	Cell-free synthetic biology

	Skills and education for the bioeconomy workforce
	Backcasting: Mechatronics revisited to shape the education of the future  engineering biologist

	Digitalisation of the forestry bioeconomy
	Satellite technology in the forest bioeconomy

	Examples of the potential for future bio-based materials
	Policy implications
	Platform technologies to support the delivery of engineering biology materials
	Standardisation, interoperability and intellectual property
	Sustainability
	Digital security

	Conclusion
	References
	Notes

	7 The digitalisation of science  and innovation policy
	Introduction
	What is digital science and innovation policy?
	Interoperability
	Using DSIP infrastructures in research assessment
	The roles of non-government actors in DSIP
	Conclusion
	References
	Blank Page




