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Abstract

The main challenge in studying economic inequality is limited data availability, which is
particularly problematic in developing countries. We construct a measure of economic
inequality for 234 countries/territories from 1992 to 2013 using satellite data on night
lights and gridded population data. Key methodological innovations include the use of
varying levels of data aggregation, and a calibration of the lights-prosperity relationship
to match traditional inequality measures based on income data. We obtain a measure that
is significantly correlated with cross-country variation in income inequality. We provide
three applications of the data in the fields of health economics and international finance.
Our results show that light- and income-based inequality measures lead to similar results
in terms of cross-country correlations, but not for the dynamics of inequality within
countries. Namely, we find that the light-based inequality measure can capture more
enduring features of economic activity that are not directly captured by income.
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1 Introduction

The past decades have witnessed a significant increase in economic inequality with important
social and economic consequences (see, e.g., Piketty and Saez, 2014; Lakner and Milanovic,
2016). As a result, the study of inequality gained relevance within the economics profession,
both in terms of studying determinants of inequality (see e.g. Milanovic, 2005; Acemoglu
et al., 2015) and the implications of rising inequality (Deaton, 2003; Easterly, 2007). However,
one important constraint in the study of inequality is the limited availability of consistent data
and measurements at a global scale. In particular, sources and methods used to construct
global databases of inequality tend to vary substantially in quality and availability across

countries and within countries over time (Atkinson and Brandolini, 2001).

Traditional measures of inequality tend to rely on a mixture of sources of national
accounts and household survey data. As noted in the literature, both sources are prone to
design differences and scattered availability, which is especially true for survey data (Deaton,
2016). Moreover, while household surveys tend to under-sample richer households from the
population (Deaton, 2005), recent advances with the incorporation of data from tax records
are still subject to tax evasion and other consistency issues (Galbraith, 2019). Finally, the
informal sector and shadow economy transactions pose additional threats to the reliability of
these data (Alstadseeter et al., 2019). These difficulties can put the results of comparative
analysis of inequality data from different sources into question, as these results could be a

product of measurement errors instead of genuine effects.

This paper proposes an alternative measure to circumvent these issues by constructing
an internationally comparable measure of economic inequality based on geospatial data. In
particular, we use worldwide satellite data on nighttime light emission as a proxy for economic
prosperity and match them with data on geo-located population counts to construct Gini-
coefficients, based on light per capita. In the context of the issues discussed above, the

greatest advantage of this approach is the consistent coverage provided by the geospatial



source data across countries. Our novel database covers a balanced global sample of 234
countries and territories on a yearly basis from 1992 to 2013, yielding a total of 5,148
observations. Moreover, in contrast to previous literature, our database is not skewed towards
high income countries, providing equal coverage across virtually all populated regions in the

world.

One potential drawback in our approach lies in the ambiguity on what is actually measured
by the night lights data. Here, we argue that our measures can capture multiple aspects
of inequality, including the distribution of income, consumption and wealth, as well as
investment and infrastructure expenditures. Besides, in contrast to other sources of economic
data, the informal activities associated with each of these aspects of inequality are less likely to
be concealed from the satellite measurements. Our measure provides a combination of these
aspects and thus, following the discussion of Sen (1997), reflects overall economic inequality
rather than only income inequality. Given these features, our measure can be a viable
alternative for researchers that are interested in studying overall economic inequality, rather
than a particular aspect of inequality such as income or wealth inequality. Moreover, due to
the global coverage our measure is particularly useful for researchers interested in inequality
across developing countries, where no or only very few traditional inequality measures are

consistently available.

Night lights data have found fruitful applications in the recent economics literature,
particularly as an alternative proxy for economic activity. Typical applications based on
these data include the evaluation of the accuracy of national income accounts (e.g., Henderson
et al., 2012; Nordhaus and Chen, 2015; Pinkovskiy and Sala-i Martin, 2016), the geographic
mapping of economic activity (e.g., Mellander et al., 2015; Bickenbach et al., 2016; Henderson
et al., 2018), regional development analysis (e.g., Michalopoulos and Papaioannou, 2013), and,
more recently, macroeconomic forecasting (e.g., Galimberti, 2020). In the area of inequality,
several studies have proposed the use of night lights in conjunction with population data

to derive measures of regional inequality in development, well-being, and income (see, e.g.,



Elvidge et al., 2012; Alesina et al., 2016; Lessmann and Seidel, 2017, and further discussion

in the next section).

We complement this literature on five methodological dimensions. First, we consider
different sources of population data. In particular, we combine data from the Gridded
Population of the World (GPW) dataset, which is strictly based on population census data,
with more granularly disaggregated population counts from the LandScan database. Second,
these data allow us to construct measures at different levels of geographical aggregation,
consistent with the resolution of each source. With a resolution ranging from 30-by-30
arcsecond cells (or pixels — these cover approximately one square kilometer at the equator), to
whole census areas within each country, we obtain a proxy for inequality at a more granular
level than the previous regional measures in the literature. Considering the substantial
variation in accuracy of population location over the years across these data sources, this

mixing approach also allows us to obtain more time-consistent measures.

Third, we also innovate with respect to the exploration of alternative versions of the night
lights data. In particular, we adopt a version of the data that accounts for more sparsely
populated regions that tend to emit less stable lights — we also consider alternatives that
correct for sensor saturation at brighter locations, but find that the effects of top-coding are
of secondary importance here. Fourth, in order to translate light intensities into measures
of economic prosperity, we adapt a constant elasticity approach to be uniformly applied
at the pixel level. Here, the relationship between lights and prosperity is regulated by an
exponential scaling parameter. Finally, we develop an agnostic approach to the calibration

of this relationship, particularly geared towards the measurement of income inequality.

Our approach yields several geospatial inequality measures as a product of different
combinations of data sources and light intensity scaling factors that can be used in the
calculation of Gini-coefficients. In order to obtain a parsimonious composite inequality
measure, we combine all these geospatial Gini-coefficients by weighting them to maximize

their correlation with a benchmark income inequality measure. Our approach of mixing



multiple light-based measures for a common target, economic inequality, can be related to
a long standing literature on measurement error (see, e.g., Browning and Crossley, 2009),
according to which several error-prone measures can provide a better measurement than
a single one. Our use of income inequality as a reference for calibration is due to its
greater availability as well as because income inequality is an important component in the
broader definition of economic inequality. For that purpose, we adopt an established source
in the literature, namely the Standardized World Income Inequality Database (SWIID),
developed by Solt (2016, more details in the next section). In order to deal with the potential
measurement errors discussed above, we use quality indicators from the database as weights

in this estimation exercise, giving a lower weight to more uncertain datapoints.

Balancing between cross-country and within-country correlations, we obtain a composite
measure that is significantly correlated with income inequality, particularly along the cross-
country dimension. This is in contrast to previous literature that found light-based measures
of inequality to have low correlation with income inequality (Elvidge et al., 2012). Hence, our
methodological innovations allow us to obtain a clearer identification of the type of economic
inequality that is measured through lights data. We also find that the light-based measures
suggest generally higher levels of inequality than traditional income inequality measures. The
latter finding is suggestive to our interpretation that light-based measures capture multiple
aspects of inequality, such as access to public services/infrastructure and wealth, that are

likely missing in income-based measures.

Finally, we use the generated inequality measure in three applications. The inequality
literature has pointed to health shocks (Alam and Mahal, 2014) and financial liberalization
(De Haan and Sturm, 2017) as important drivers of inequality. We revisit this literature and
estimate the relationships between economic inequality and out-of-pocket health expenditure,
epidemics, and financial liberalization. In particular, we compare the results for income- and
light-based Gini-coefficients. We find that cross-country results between the two measures

are very similar. In contrast, absorbing country-specific averages through fixed effects leads



to different results, which, we argue, can be explained by light-based measures incorporating
income inequality as well as other more persistent aspects of economic activity, such as
housing and infrastructure investments. Moreover, across all applications we are able to
investigate a more complete sample of country-year observations using light-based inequality
as compared to income-based data — e.g., for epidemics we observe an increase from 3,278
to 5,148 observations. This larger sample size is due to the extended number of countries
as well as observations within countries over time. Finally, we generally find that estimates
with light-based Gini-coefficients are robust across the different samples, as well as across

alternative light weighting schemes.

The remainder of this paper proceeds as follows. The next section gives a short overview
of the related literature. In Section 3, we provide a description of the data and adjustments
needed to construct the light-based inequality measure in Section 4. Three applications of

the data are provided in Section 5. The last section concludes.

2 Related Literature

Previous studies on inequality rely on different sources of data that range from household-
level surveys to aggregate regional and country-year databases. In this section, we discuss
common sources of data on income inequality and their (un)availability issues. We then turn
to a review of studies more directly related to our approach of using geospatial data for

economic measurement.

2.1 Income inequality data

The most common sources of data on income inequality are the World Income Inequality

Database (WIID), from UNU-WIDER, and the Standardized World Income Inequality



Database (SWIID).! The WIID combines data from the OECD, Eurostat, Luxembourg
Income Study (LIS), World Bank and household surveys. It contains distributional data,
such as Gini-coefficients, percentiles and other income information, for 179 countries up to
2015. However, the database is very unbalanced: in the 1992-2013 sample period, missing
country-year points account for about 54% of the total data available for countries included

in the database.

The SWIID database is developed and frequently updated by Solt (2016) with the aim
of improving cross-country coverage while keeping the comparability between countries and
years. The sources are the WIID database, LIS, other cross-national and national databases as
well as data from scholarly articles. The SWIID database provides a significant improvement
in coverage relative to the WIID, with Gini-coefficients for a total of 191 countries over the
period from 1960 to 2016. Nevertheless, the percentage of missing values for the 1992-2013
years still amounts to about 20% of a balanced sample. We will use the SWIID data as a
baseline reference for the calibration of our own new measure and for comparative purposes

in the applications.

Solt (2016) uses two LIS series as baselines for standardizing the source data by generating
model-based multiple imputation estimates for missing observations. The standard deviation
over these imputed values can be used to capture the quality of the data, where more precise
estimates are related to less dispersed imputations. Jenkins (2015) gives an overall assessment
of the WIID and SWIID data, pointing to caveats about the SWIID’s imputation approach.
In particular, a potential misspecification of the imputation model can bias estimates of
inequality and lead to uncertainty about what is actually being measured. However, Jenkins
(2015) also finds that constructing averages across the imputed values leads to similar
standard errors as in the case where the imputation variability is taken into account. This

procedure reduces potential biases and is, thus, applied in our subsequent analysis. Finally,

!See Ferreira et al. (2015) for a comprehensive review of cross-national databases of income inequality.



with the goal of analyzing the influence of the imputation model on our results, we use the
WIID data as a baseline reference in a robustness check. We provide more details on this
in Section 4 below. Our findings show a high correlation between WIID- and SWIID-based
measures, hence we conclude the (potential) bias from the imputation model has a negligible

effect on our measure.

Another important difference of the SWIID database is that it provides distinct
inequality measures for market-based and after-tax income. Market-based Gini-coefficients
are calculated on pre-tax income, which excludes any form of redistribution. In contrast,
net income inequality is based on income after taxes and social benefits. The sample size
and the distinction between market- and net-based inequality measures constitute important
advantages of the SWIID compared to the WIID data. For our purposes, we will adopt the
net income measure because it reflects income available to individuals and is therefore more

relevant for light emission.?

2.2 Night lights data in economics

Seminal studies on the use of night lights data in economics have focused on the data’s
capabilities as a proxy for economic activity, especially in the context of national statistics.
The contribution of night lights data as an alternative to traditional national accounts data
was, among others, analyzed by Chen and Nordhaus (2011). Their goal was to determine
whether night lights add value to the conventional national accounts statistics. Similarly,
Henderson et al. (2012) proposed a statistical framework to combine night light measurements
with conventional national income statistics and generate an improved estimate of economic
growth. Their overall finding is that night lights data improve data availability and quality,

especially in countries with less developed statistical agencies. Nordhaus and Chen (2015)

2In another robustness check, we considered using the market-based inequality measures as reference and
found that the correlations with the implied lights-based measures are less than half the magnitude of the
correlations obtained using the net income measures as reference. These results are available upon request.



go one step further and argue that lights data can offer additional information for a more
granular analysis of regional output within developing countries. More generally, see also
Donaldson and Storeygard (2016) for a review of applications of remotely sensed data in

economics.

In the context of inequality, there have been several studies proposing the use of the
night lights data to construct alternative measures of inequality. One earlier contribution is
provided by Elvidge et al. (2012), who combine night lights with gridded population data
to construct a light-based Gini-index of development. They find that the resulting measure
of inequality tends to be inversely related to different measures of development, but poorly

correlated with a traditional income-based Gini-coeflicient.

In a related paper, Mveyange (2015) looks at regional inequality in Africa for 1,235 regions
by relying on light and population data. In contrast to Elvidge et al. (2012), Mveyange
finds a strong correlation between light inequality and income inequality calculated at the
regional level. Following a similar methodology, Lessmann and Seidel (2017) use night lights
and population data to construct a panel dataset of regional incomes worldwide, covering
180 countries from 1992 to 2012. They then use the new measure to study cross-country
convergence in the dispersion of regional incomes over time, finding evidence of an N-shaped

relationship between development and regional inequality.

Going beyond the scope of income inequality, Alesina et al. (2016) discuss the use of night
lights for constructing a measure of ethnic inequality. For this, they combine linguistic maps
on the spatial distribution of ethnic groups within countries with corresponding measures of
night lights density. Taking advantage of the regional differences in the luminosity data, the
authors argue that their inequality measure captures differences in well-being across different
ethnicities, particularly through varying levels of public goods provision. They conclude that
differences in geographic endowments can explain a large fraction of the variation in economic

inequality across groups. Related to this finding, Hodler and Raschky (2014) observe that



birth regions of incumbent political leaders have more intense nighttime lights, which is likely

to affect regional inequality.

Another related contribution is provided by Weidmann and Schutte (2017), who use night
light emissions to predict local wealth at the level of villages or neighborhoods across a sample
of 39 developing countries. They find that light emissions provide highly accurate predictions
of wealth measurements derived from geo-referenced survey data. Although these authors do
not calculate measures of inequality, it is interesting to note that income and wealth inequality
are correlated, though the level of wealth inequality tends to be considerably higher across

countries (see Davies et al., 2009; Piketty and Saez, 2014).

Our paper complements this literature in several dimensions. First, we consider
alternative sources of data, particularly using a mixture of data on gridded population.
As described in the next section, our approach takes advantage of cross-source variation
in the precision of geolocated population data, both across space and over time. Second, we
also explore varying levels of geographical aggregation in the construction of our inequality
measures. Another key innovation is that we consider a version of the night lights data
that provides a better account for sparsely populated regions that emit less stable lights.
Finally, our measures are based on an agnostic calibration of the relationship between lights
and economic activity, which, in turn, is informed by a comparison to the income inequality
measure discussed above. Taking all of these innovations together, we obtain a correlation of
approximately 0.5 with SWIID. This is a much higher correlation as compared to the earlier
literature. Alesina et al. (2016), for instance, find a correlation of 0.25-0.3 between their
ethnic inequality measure and the SWIID. Correlation estimates in Mveyange and Lessmann
and Seidel (2017) between light- and income-based inequality are in a similar range. We

describe these methodological innovations in the following sections.



3 Source Data and Measurement Issues

In order to construct geospatial measures of inequality, we rely on nighttime lights and
population data. These data come from different sources and in varying formats, naturally
ensuing different issues on their use for inequality measurement. In this section, we describe

these source data and relevant measurement issues.

3.1 Night lights data

Source and construction The night lights data are obtained from the Earth Observation
Group (EOG) at the National Oceanic and Atmospheric Administration’s (NOAA) National
Centers for Environmental Information (NCEI). We use the data based on the Operational
Linescan System (OLS) instruments, which have been designed to capture images of cloud
cover by the United States Air Force Defense Meteorological Satellite Program. These data
are available at the annual frequency between 1992 and 2013 with a full coverage of Earth’s
surface along the longitudinal dimension between 75 degrees north and 65 degrees south in

latitude. Figure 1 illustrates the visual features of these data over selected regions.?

The satellite data were processed by EOG scientists into the form of global composite
images representing the average intensity of lights captured by the OLS sensors during
nighttime (around 9pm local time) over the year. The intensity of the night lights radiance
are converted into 6-bit digital number (DN) values, ranging between 0 and 63, and allocated
over a global grid of 30 arc second cells (or pixels) according to their geographic location.
The annual measurements are based on averages of cloud-free observations, also discarding

images affected by sunlight, moonlight, and aurora lighting (Elvidge et al., 2003). Hence, the

3The OLS-based night lights data have been discontinued after 2013, being replaced by the more recently

launched Visible Infrared Imaging Radiometer Suite (VIIRS) sensors (see Miller et al., 2013). At the time
of writing, there were still open issues with respect to how VIIRS compares to OLS when merging the two
datasets. Hence, we decided to focus only on OLS data, also because these are the longest available series
of lights data covering the period prior to 2013, leaving an extension of our methodology to VIIRS data for
future research.
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Figure 1: Illustrative Extracts of Average Night Lights

(a) Europe (b) East Asia
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Notes: Based on 2013 data from the Operational Linescan System (OLS) obtained from NOAA-NCEIL. The
darker the pixel, the higher the light intensity.
number of underlying observations in the annual lights measurements varies across countries,
particularly with respect to their latitude — more sunlight and aurora effects in Nordic
countries — and the prevalence of areas covered by rainforest — more clouds over tropical
countries. The statistics in the first row of Table 1 provide a summary of the cross-country

variation in this variable.

Stable lights and low-coding There are two main versions of the OLS data, one averaging
the raw visible band DN values, while the other, so-called stable lights, is produced after
filtering out non-persistent and “low-coded” light intensities — these are mostly locations with
light intensity between DN=1 to DN=3. The latter is the version that is mostly used in social
sciences applications, because it provides a clearer identification of lights from urban centers
(Elvidge et al., 2003). Nevertheless, as the statistics in the second and third rows of Table 1
indicate, the stable lights algorithm can have a strong effect on the measurement of low-coded
signals, particularly over the less densely populated regions. In fact, these statistics reveal
that a substantial share of the population for some countries in our sample is located in these

regions. Assuming that these locations have zero lights, as implied by the stable lights data,

11



Table 1: Cross-Country Data Summary Statistics

Quartiles

Q25 Q50 Q75
Avg. cloud-free obs. per pixel 6.42 39.53 50.18 58.03 74.84

Min Max

(OLS) Greenland Colombia Norfolk Isl. Qatar Mauritius
Fraction unlit pixels 0 0.27 0.75 0.95 1.00
(OLS stable lights DN=0) Singaporef Switzerland Norway Gambia Tokelau
Pop. share in unlit pixels 0 0.03 0.19 0.57 1.00
(LSC pop., OLS stable lights DN=0) Singaporef Portugal Colombia Gabon Tokelau
Fraction top-coded pixels 0 0 0.0002 0.0014 0.578
(OLS DN=63) Liberiat Fijif Macedonia Tunisia Singapore
Pop. share in top-coded pixels 0 0 0.040 0.163 0.922
(LSC pop., OLS DN=63) Guineat Somaliaf Namibia Russia Bahrain
N. census areas 2 29 153 739 10.5M
(GPW) Norfolk Isl.t Botswana Nicaragua Nigeria U.S.A.
N. populated pixels 9 3032 78,047 368,626 9.1M
(LSC) Monaco W. Samoa Oman Cote d’Ivoire China

Notes: All statistics are based on country averages over time; T indicates a selected country
among others showing an equal value for the corresponding statistic.

would distort the measurement of inequality for such countries. Therefore, we adopt the

average visible lights version of the OLS data.?

Sensor saturation and top-coding Another issue affecting the scale of the OLS data is
sensor saturation over brighter sources of lights: signals that exceed the sensor’s detection
range are recorded with the highest DN value in the OLS scale (i.e., 63), which is referred
to as “top-coding” (Hsu et al., 2015). As the statistics in the fourth and fifth rows of Table
1 indicate, this issue can be a concern for highly urbanized countries, especially developed
small island countries such as Bahrain and Singapore. By its nature, this problem is of a
lesser concern to less developed countries, with over a quarter of the countries in our sample
not showing any top-coded pixels during our sampled period. In fact, adopting adjustments

proposed in the literature (see Bluhm and Krause, 2018) we find that top-coding has only

*We also calculated inequality measures on the basis of the stable lights data. While the overall correlation
between these two alternative measures is high (p € [0.75 — 0.85]), there are important differences mainly for
low income countries. These alternative measures are available upon request.
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minor effects on our inequality measures.® Hence, we continue to adopt the uncorrected

original OLS data.’

Lights and economic activity The underlying assumption in the use of the night
lights data for economic measurement is that locations with brighter lights are likely more
economically prosperous than dimmer ones. This relationship, nevertheless, is not necessarily
linear in levels and across scales of geographical aggregation. Varying industrial compositions,
rates of urbanization, and cultural uses of light can affect how observed lights translate into
economic development across regions. In fact, previous research suggests that, at the national
aggregate level, a (nonlinear) constant elasticity relationship between lights and income is
more appropriate (Henderson et al., 2012). Moreover, there is mounting evidence that such a
relationship can be heterogeneous across countries, depending on levels of development and
the structure of the economy (Hu and Yao, 2019; Galimberti, 2020). The relationship between
lights and economic activity is also notably more uncertain at higher levels of disaggregation

(Nordhaus and Chen, 2015; Bickenbach et al., 2016).

In this paper, we adopt a constant elasticity approach to process the light intensities
into measurements of economic prosperity at the pixel level. Namely, we assume a nonlinear
relationship of the form

xX; = DNf, (1)

SParticularly, we find that: (i) the overall correlation between inequality measures based on non-corrected
versus corrected lights data is equal to 0.89; (ii) the overall difference between these two versions, averaged
across all countries in our sample, is close to zero.

5Three additional issues known to affect the OLS lights measurement are: (i) gas flares, (ii) the lack of an
inflight calibration mechanism across satellites, and (iii) over-glow/blurring (see Gibson et al., 2020). On
the first two, we follow the literature by excluding areas identified with gas flares from our calculations,
and using an invariant region method to intercalibrate the data across the different satellites and years (see
Elvidge et al., 2009, for further details). Regarding over-glow /blurring, an optical problem that causes lights
to be wrongly attributed to neighboring areas, we experimented with a smoothing algorithm similar to that
on-board the satellites (as described by Elvidge et al., 2004) and also calculated inequality measures on the
basis of data — lights and population — averaged in 5 x 5 blocks of pixels to make the spatial resolution
between these data more consistent; the resulting measures are virtually equal to using the original data, and
are available upon request.
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where each pixel i’s digital number (DN) on light intensity is converted to a light-based
measure of economic activity, regulated by an exponential scaling parameter, x. As reviewed
above, estimation of x at such a disaggregated level is very difficult due to the unavailability
of consistent data on economic activity, x;, as well as the likely existence of heterogeneous
relationships between lights and economic activity across different locations. As noted by
Henderson et al. (2012), even at the national aggregate level, estimates of xk will tend to be
affected by national statistics and satellite measurement errors. In this context of ambiguity,
we follow an agnostic approach to the determination of the night lights scaling factor x, and
consider multiple calibrations for this parameter. Namely, we calculate separate inequality
measures for each k = {0.5,1.0,1.5,2.0,3.0,5.0}, while allowing these different calibrations

to mix in a latter stage when we construct composite inequality measures.’

3.2 Population data

Sources and construction We consider two sources of population data. The first is the
Gridded Population of the World (GPW) dataset, produced by the Center for International
Earth Science Information Network (CIESIN, 2016). The GPW is constructed on the basis
of population census data, collected from hundreds of organizations that include national
statistics offices and other mapping agencies, matched to spatially-explicit administrative
boundary data (Doxsey-Whitfield et al., 2015). The second source is the LandScan (LSC)
database, produced by the Oak Ridge National Laboratory (Bright et al., 2017). In contrast
to the GPW, the LandScan data are based on a multi-variable mapping approach that
disaggregates census counts within administrative boundaries with the support of ancillary

data, such as land cover, roads, slope, urban areas, village locations, and high resolution

"Remember that DN can take values between 0 and 63. For the brightest pixels, using a scaling parameter
of 5 obviously translates into a very large number in terms of economic activity. However, as described
more in detail below, we divide this economic activity by the population in a pixel in order to calculate the
economic activity per capita. For the brightest pixels, a typical population per pixel is between 100 and
150K. Therefore, the resulting economic activity per capita used for the Gini-coefficient calculation is only
around 10K.

14



imagery (see Dobson et al., 2000).% Figures 2 (b) and 2 (c) present a comparative illustration

of these two data sources for the population of Gabon in 2010.

Census-level aggregation Similarly to the night lights data, the GPW and LSC
population counts are distributed over 30 arc seconds grids of cells across Earth’s surface.
However, one important difference between the two population datasets is that the GPW
is based on an areal-weighting method that uniformly distributes population counts across
the gridded cells within the census area. This feature is clearly illustrated for the case of
Gabon’s second largest city, as depicted in Figure 2 (b): the GPW data “spread” Port-Gentil’s
population across the Bendje department, which is the census area covering that city. Hence,
the GPW data at the cell level tend to underestimate population in more populated cells,
and vice versa. Naturally, an inequality measure based on this information is likely to be
biased, and for that reason we use data aggregated at the census area level for the GPW data.
One potential issue with this approach is that GPW-based measures of inequality will lack
a consistent definition regarding their underlying level of geographical aggregation. Namely,
the geographical definition of census regions can vary in size and shape, both within and
across countries. Besides, the number of census regions can also vary substantially across

countries — see the statistics in the sixth row of Table 1.

Pixel-level aggregation In this context, the LSC dataset provides an interesting
alternative to construct inequality measures with a more controlled degree of geographical
aggregation. Relative to the GPW, the LSC stands in the opposite end of the spectrum of
granular precision, as the multi-variable mapping approach provides more reliable estimates
of population counts at the pixel level. Moreover, the use of pixel-level data greatly increases

the number of groups we are able to use in the construction of our inequality measures; as

8Night lights were also among the LandScan data sources between 1999 and 2004, which can introduce biases
in our inequality measures. After considering alternative extrapolation approaches, not including these years,
we obtained similar results. Hence, we decided to use all available data from this source as originally provided.
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Figure 2: Gabon — 2010
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the statistics in the last row of Table 1 indicate, the number of usable pixels for the median

country in our sample is about 510 times larger than the corresponding median number of

census areas. However, another important difference between the GPW and LSC datasets

is that the latter aims to measure daytime ambient population, in contrast to GPW’s focus

on nighttime resident population. Hence, the greater precision of LSC comes at a cost of

less consistency with the lights measurements in terms of their representative location of

population.



Availability and revisions The population data also differ with respect to availability and
revisions over time. The GPW is mainly updated on a decadal basis following each round
of the United Nations World Population and Housing censuses.” We use GPW version 4.10,
which is based on data from censuses occurring between 2005 and 2014, and extrapolated
to produce population estimates for the years 2000, 2005, 2010, 2015, and 2020. The LSC
dataset, in contrast, is available starting from the year 2000 and is updated on an annual basis,
mostly to incorporate new spatial data and imagery analysis. Hence, whereas advances in
high resolution imagery over the years allowed the LSC to obtain more precise measurements
of population location, comparability of LSC data on a cell to cell basis across different
versions is compromised. For our purposes, this means the dynamics of inequality measures
derived on the basis of these data should be interpreted with caution as their underlying
granular precision is changing over the years. Notice the GPW is not affected by this issue,

though its dynamics are again derived only at the census level.!

3.3 Borders data

The geospatial data described above come in the form of global composite images. In order to
construct our inequality measures, we need to extract these data for each country according
to their borders. For that purpose, we adopt the border definitions from the GPW companion
National Identifier Grid dataset, which contains definitions for 241 countries/territories.
Moreover, for the case of inequality measures aggregated at the census level, we also need
borders data at the census level. In order to maintain consistency with the construction of

the GPW data, we again adopt the census borders associated with that dataset.'' After

9CIESIN updates the data more frequently in the form of new release versions. However, the main versions

are based on each decadal census round.

%Tn order to construct inequality measures for the broader sample of data available on night lights, we
extrapolate the population data to cover an annual sample from 1992 to 2013. For that purpose, we follow
a similar approach to the one used in the extrapolation of GPW population counts. See Appendix A for
details.

"Due to license restrictions, the subnational borders data are not publicly available for some countries. We
obtained these data through an on-site visit to CIESIN.
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restricting our sample to countries for which there is more than one census area available, we

are left with a sample of 234 countries/territories.'?

4 Geospatial Inequality Measures

One important advantage of gridded night lights and population data is their availability
at a global scale. We now attempt to capitalize on this greater availability and the
properties of these data to construct alternative measures of inequality across a sample of 234
countries/territories over the period from 1992 to 2013, thereby obtaining 5,148 datapoints.
The main distinguishing feature of these measures is their level of geographical aggregation,
which is determined by the type of population data used to assess the spatial distribution of
lights. Namely, we construct two types of measures, one aggregated at a subnational level,
depending on each country’s definitions of census areas, and another at a deeper level of
granularity obtained with the data geo-located over grids of 30 arc second cells. We refer to
these two sets of measures as geospatial Gini-coefficients. We then merge these geospatial
Gini-coefficients into a single composite measure, namely the light-based Gini-coefficient,
designed to proxy income inequality at the country level. In this section, we describe our
approach for the construction of these geospatial inequality measures, and discuss some key

descriptive statistics.

4.1 Geospatial Gini-coefficients

We measure inequality with geospatial Gini-coefficients, which are calculated on the basis of
the relative distribution of lights across geographically grouped population within countries.
The Gini-coeflicient is a measure of dispersion commonly used to measure inequality in the

distribution of income or wealth across people or groups of people. Its graphical representation

2The following territories had only one census area and are thus not in our sample: Anguilla, Gibraltar,
Pitcairn, Saint-Barthelemy, Saint-Martin (French part), Svalbard and Jan Mayen Islands, and the
Vatican/Holy See.
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is given by the Lorenz curve, illustrated in Figure 2 (d), which depicts how the cumulative
shares of (transformed) lights, ranked by (transformed) lights per capita (see Equation 1),
evolve relative to the cumulative shares of population in a country; the Gini-coefficient
is defined as the relative area between the line of perfect equality and the Lorenz curve.
Mathematically, we calculate Gini-coefficients using a formulation for grouped data (see
Appendix B for the derivation):

o EZjJ\/il (”jTHJrajfl)fﬂj N+1

, (2)
N Zj\g Lj N

where M denotes the total number of groups (pixels or census areas) in the country grid, N the
total number of people, n; the population in group j, and x; the (transformed) light intensity
in group j, with the index ranked in ascending order of the groups’ (transformed) light
intensity per capita. a; is the cumulative sum of population up to group j, i.e., a; = ZZ::I ng
for j > 0, and ag = 0.13

We calculate two main versions of geospatial Gini- coefficients by varying the level of
geographical aggregation according to the source of population data. Namely, we use GPW
population data to construct country-level Gini-coefficients based on data grouped at the
census level, and LSC data for country-level Gini-coefficients calculated at the pixel level. By
construction, these country-level Gini-coefficients capture different degrees of inequality in
the spatial distribution of lights among the people that live in a country. In other terms, the
geospatial Gini-coefficients capture varying degrees of the “between” versus “within” regions
components of nationwide personal inequality, depending on their level of aggregation: the
greater the aggregation, the greater the dominance of the regional component of inequality.
In fact, notice that the decomposition of Gini-coefficients based on spatially grouped units

is also affected by potential overlaps between the regional distributions of lights (Shorrocks

3The calculation of the Gini-coefficient with discrete data is known to be downward biased in small samples
(Deltas, 2003). See Appendix B for further discussion and possible corrections. We find that such corrections
have no impact on our results, hence, we continue adopting the version given by Equation (2).
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and Wan, 2005). Hence, the census-level Gini-coefficients will tend to generate lower levels of
inequality, due to the missing within-region inequality, while the pixel-level Gini-coefficients
will tend to be more strongly affected by the measurement errors stemming from the source
data, as described above. The former prediction is clearly illustrated by the comparison
of these two versions of Gini-coefficients for the case of Gabon in Figure 2 (d). Summary
statistics covering the whole sample of these geospatial Gini-coefficients, presented in Table
C1 in the Appendix, further corroborate these arguments: (i) the census-level measures are
on average lower than the pixel-level ones; (ii) the LSC-based Gini-coefficients show greater

variation over time than those based on GPW.

4.2 Weighted light-based inequality measure

Other than the two versions discussed above, we also calculate geospatial Gini-coefficients
for six calibrations of the lights scaling factor, k, leaving us with a total of 12 geospatial
measures of inequality. In order to synthesize these measures into a single one, we now
derive a weighting scheme designed to maximize the correlation of a composite measure
with a benchmark measure of inequality. In particular, we are interested in a measure that
resembles measurements of income inequality, where we take the SWIID after-tax income

Gini-coefficients as a reference (Solt, 2016).14

Weights estimation By the two-dimensional nature of our data, we can distinguish
between two different correlation goals: cross-country and within-country (time-series)
correlations. The cross-country correlations are calculated by matching the inequality
measures on a yearly basis, while the within-country correlations are calculated by pairing

the measures at the country level. We then average these correlations and estimate weights

411 a robustness check described below, we use the WIID as a reference (UNU-WIDER, 2017).
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on our geospatial Gini-coefficients by solving the following numerical optimization problem:

s {NOEEE + (1= %) oG | (3)
Wisi=1
12
sty wi=1,0<w <1V,
i=1
where
12
G = wG, (4)
=1

is the resulting weighted light-based Gini-coefficient, obtained by weighting the 12 geospatial
Gini-coefficients, denoted by G. pg}ﬁ%y and pgiﬁhéﬁj stand for the average cross and within-
country correlations, respectively, between the weighted Gini-coefficient and the SWIID
income-based Gini-coefficient, GY. Importantly, we calculate weighted correlations in order
to account for the varying accuracy in the SWIID imputations, using the inverse of the
SWIID estimated standard errors as weights. Finally, A is a parameter regulating the relative
relevance of the two correlation goals in the construction of the weighted measure. We solve
this maximization problem for 3,287 observations, where we have observations on the SWIID
income-based Gini-coefficient.!®

Correlations trade-off Numerical estimation of (3) indicates the existence of a trade-
off between how close our weighted measure can resemble the cross-country dispersion of
income-based Gini-coefficients versus their correlation in terms of within-country dynamics.
This trade-off is illustrated in Figure 3 (a), which also depicts the correlations between the
original geospatial and the income-based Gini-coefficients. There is a clear dominance of

the weighted Gini-coefficient over the original ones. Besides, the correlations between the

In an earlier version of this paper, we formed country groups based on (i) country size, (ii) population
density, and (iii) light density and calculated group-specific weights based on the equation above. The results
using these different groups were very similar. However, since the group formation was quite arbitrary, we
decided to abandon this approach. Relatedly, we experimented with estimating country-specific weights,
but countries with very few or no income inequality observations proved to be significant hurdles for that
approach.
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Figure 3: Geospatial and Weighted Light-based Gini-coefficients
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weighted and the income-based Gini-coefficients are affected by A, as expected: the cross-
country correlations increase with A, while the within-country correlations decrease with .
Relative to previous literature, these correlations are on a higher ground. Elvidge et al.
(2012), for example, find a cross-country correlation of only about 0.3 between their night
light development index and income inequality. Although the choice of A can be of secondary
importance for applied purposes, the results reported in Figure 3 (a) suggest a calibration in
the middle range provides an interesting compromise between cross and within correlation
with the measure of income inequality. Hence, in what follows for our applications in the next
section we adopt A = 0.5 for our main results and discussion, while reporting the robustness

of these results to alternative specifications in the Appendix.

Figure 3 (b) presents the estimated weights given to the original geospatial Gini-
coefficients — none of the measures based on k = {1.5,2.0} received a positive weight,
hence they are not presented. It is interesting to note that the census-level GPW-based
Gini-coefficients tend to receive a greater weight when targeting maximal within correlation

(A = 0), which is consistent with our analysis above indicating that this source provides
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more reliable measurements over time. Nevertheless, we find that our measures capture the
cross-country dispersion of income inequality more accurately, while providing less reliable
proxies for the within-country dynamics in income inequality identified by the SWIID data. In
particular, notice that we can easily achieve an average cross-country correlation of over 0.5,
while the maximal average within-country correlation is below 0.13 — we also find a greater
dispersion in the within-correlations across countries (standard deviation of about 0.5) than
in the cross-correlations over the years (standard deviation of about 0.04). Further summary

statistics on the weighted and income-based Gini-coefficients are presented in Appendix C.

Country-specific factors The cross-country variation in the different measures of
inequality can be related to country-specific characteristics. Here, we highlight two factors
that are directly related to the construction of our measures: the countries area sizes and
lights density levels—although we do not pursue an exhaustive analysis of the many potentially
correlated factors at this stage, we do provide additional applications on that direction in the
next section. First, the relation between our inequality measures and country size is illustrated
in Figure 4 (a). The light-based Gini-coefficients tend to be lower for smaller countries,
while the income-based measures are virtually insensitive to country size. One potential
explanation for this result, as previously alleged, is that our measures capture a broader
definition of prosperity than income, which can, in turn, be related to country size. For
example, provision of basic public goods such as electrification, sanitation, and transportation,
can require more complex logistics in bigger countries, hence posing a greater challenge for an
equitative distribution of such services across regions. Our inequality measures are consistent
with this hypothesis as we observe higher levels of inequality in bigger countries. Nevertheless,
for the purpose of measuring income inequality, the disparate effect of country area in our

measures should, ideally, be controlled for in the applications.

Second, Figure 4 (b) shows that there is a negative relationship between measured

inequality and the total lights per area observed within countries. The latter statistic
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Figure 4: Cross-country Variation in Measured Inequality by Factors
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captures a mixture of level of development and population density, as the countries in the
higher end of the lights per area range include mostly European countries and small island
nations/territories. Interestingly, measured inequality tends to be lower for those countries,
both in terms of our weighted light-based measure and the traditional measure of income
inequality. Hence, while the lights density statistic naturally carries the effects of country
area pointed out above, as a proxy for development it is reassuring to find that our measures
are also consistent with the prevailing view that there is a negative relationship between

inequality and level of development (see, e.g., Barro, 2000).

Extended sample The estimation of the weights used to calculate our weighted inequality
measure is based on a restricted sample of common observations between the SWIID and our
geospatial Gini-coeflicients. Namely, the estimation sample contains 3,266 observations for a
total of 175 countries/territories, unbalanced over the years between 1992 and 2013. However,

because these weights are assumed to be equal across countries and years, we can use our data
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to extrapolate our weighted light-based Gini-coefficient to a broader, and balanced, sample of
5,148 country-year observations, covering a total of 234 countries/territories over the period

from 1992 to 2013.16

Figure 5 illustrates the relationship between these measures of inequality, also including
datapoints for which only light-based measurements are available. There is a clear difference
in levels between the light- and the income-based Gini-coefficients, the former being on
average about 0.3 points higher than the latter. Although these absolute level differences
are less relevant for comparative analysis of inequality across countries and over time, they
can account for how the lights data complement income measurements as a proxy for multiple
aspects of development. Namely, the night lights data can capture varying levels of human
development with respect to the geographical distribution of economic activity, infrastructure

and wealth (see, e.g., Michalopoulos and Papaioannou, 2013; Henderson et al., 2018).

The distribution of the datapoints in Figure 5 show a clear positive correlation between
income- and light-based Gini-coefficients. Outliers, such as Barbados, have smaller marker
sizes, which indicates a lower quality of their corresponding income-based measures of
inequality. In general, countries with higher income-based data quality are closer to the
regression line. Altogether, these features represent evidence that our measure is closely
related to income inequality, while also capturing additional aspects of economic inequality.
We now turn to an assessment of these new measures by providing several applications of the

data.

Robustness In order to see whether the imputation model used in Solt (2016) affect our
results, we repeat the optimization problem described in equation (3), but use WIID as
a reference (UNU-WIDER, 2017). This drastically reduces the number of observations to
1,777 (compared to 3,287 for the SWIID). However, the newly obtained WIID-based Gini-

coeflicient shows a very high correlation with the SWIID-based Gini-coefficient. For instance,

16 A complete list of countries and territories is provided in Table D5 in the Appendix.

25



Figure 5: Light and Income-based Gini-Coefficients
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data. Not shown: Norfolk Island (average light-based Gini-coefficient of 0.348) and Tokelau (average light-
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the (pooled) correlation between the two measures equals 0.9620 when using A = 0.5. Given
these results, we decided to rely on the SWIID-based Gini-coefficient due to the much larger
number of observations. The following results will use the SWIID-based Gini-coefficient.

5 Applications

The aim of this section is to present three applications on different topics, namely out-of-

pocket health care expenditure, epidemics and financial liberalization, using the geospatial
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inequality measures discussed above. The main purpose is to show how the light- and income-
based inequality measures correlate with different determinants of inequality and what can
be learned from such correlations in terms of what types of economic activity are captured

by both measures.

5.1 Empirical approach

In the following applications, we follow a unified approach, using the measures of inequality
discussed above to estimate

Gc,t = Y%t + 0 + e + €ty (5)

where G+ represents different versions of the Gini-coefficient (income- or light-based) for
country c in year t. For comparative purposes, the Gini-coefficients are normalized by their
corresponding sample mean and standard deviation. z.; is the variable of interest that varies
according to the application, and §; and «. are time and country fixed effects, respectively. We
also consider specifications without country fixed effects, in which cases we include country
total areas as an explanatory variable to control for the negative correlation between the light-
based inequality measures and country area, as documented in Figure 4 (a) — this has only
minor quantitative effects on our estimates, see Table D4 of Appendix D. Finally, in order to
account for the (potentially) unbalanced effect of less populated countries in our estimates,

we present both unweighted and population-weighted regression results for all applications.

5.2 Out-of-pocket health care expenditure

In this application, we study the relationship between out-of-pocket (OOP) health
expenditures and economic inequality. High OOP health care expenditures can result in
financial hardship and can constitute a source of poverty in many developing countries (Xu
et al., 2018). Alam and Mahal (2014) provide a literature review on this topic, concluding

that OOP health spending poses a high burden on households’ finances. Moreover, they find
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that negative health shocks are often associated with significant reductions in labor supply,
which can further aggravate the financial situation of households. In line with these results,
a recent study by Christopher et al. (2018) finds that OOP expenditures increase inequality
in the US.

We use data on the share of OOP health expenditures from the Global Health Expenditure
Database (GHED) of the WHO (2019). These data are available from 2000 for 188 countries
and territories, and contain the share of total health care expenditures coming out of
households’ pockets. The other two contributors observed in the data are health expenditures
financed through the government budget and insurance contributions. While on average
OOP expenditures make up 35% of total expenditures (see Table D3 in the Appendix),
there is substantial variation across countries, ranging from a minimum of zero OOP health
expenditures, observed for Belgium in the early 2000’s, to a maximum of over 90% of health

expenditures coming out-of-pocket in Myanmar in 2005.

Using these data, we estimate Equation (5), where z.; is OOP expenditure. The results
are provided in Table 2. OOP expenditure has a significant and positive relationship with the
income-based Gini-coefficient (see column 1), which is stronger after weighting by population
of the respective countries (column 4). Using the light-based inequality measure, we obtain
a slightly larger coefficient estimate, which also increases when weighting by population.
In terms of magnitude, our baseline results (column 1) indicate that a country with a 10
percentage point higher share of health expenditures coming from OOP has an expected
income inequality about 0.07 standard deviations higher, while the same country’s light-

based inequality would be 0.10 standard deviations higher.

These results might be partly driven by the fact that individuals living in countries
with more poverty and inequality also face a higher share of OOP expenditures. In order
to account for this (potential) effect of reverse causality, we include country-specific fixed
effects to the model in columns (2) and (5). As expected, including fixed effects leads to

considerably smaller estimates, indicating that OOP expenditures have a less clear effect
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Table 2: Regression Results for Out-of-Pocket Expenditure

Dependent variable (1) (2) (3) (4) (5) (6)
Income-based Gini 0.735* 0.145 1.463%**  -0.091
(0.403)  (0.120) (0.541)  (0.212)
Light-based Gini 1.002%%*  0.066 -0.004 1.779*%** (.589** 0.537*
(0.279)  (0.144) (0.137)  (0.473)  (0.292) (0.311)
Observations 2089 2089 2601 2089 2089 2601
# of countries 177 177 188 177 177 188
Country fixed effects no yes yes no yes yes
Population weights no no no yes yes yes

Notes: Each coeflicient denotes one estimation of the model in Equation (5) using OOP expenditure as
explanatory variable, and income- or light-based Gini-coefficients as dependent. Data on out-of-pocket
(OOP) expenditure are from WHO (2019) and cover the years 2000-2013. The light-based Gini-coefficient
refers to the weighted measure with our preferred parameter choice of A = 0.5. Results for alternative
values of A are reported in Figure D1 (a) in the Appendix. The income-based Gini-coeflicient is obtained
from Solt (2016). Columns (1) and (4) include the country area as control variables. Columns (4)-
(6) show results with population weights, where countries with higher population sizes receive a higher
weight. *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the country level and reported in
parentheses.

on the country-specific dynamics of inequality. Interestingly, the results using income-based
inequality measures, both weighted and unweighted, turn insignificant, while the result for
the light-based Gini-coefficient with population weights remains significant. Notice the latter
finding is also corroborated using the extended sample of all available observations for the
light-based measure, depicted in columns (3) and (6). These estimates can now be interpreted
in terms of changes within a country, e.g.: using the estimates from column (5), a 30
p.p. decrease in OOP expenditure (approximately equivalent to the interquartile range of
OOP shares) predicts a decrease of about 0.18 standard deviations in light-based inequality,
while no statistically significant change can be identified solely in terms of income inequality.
Finally, the estimated relationship with less OOP expenditure leading to lower (light-based)

inequality fits the findings of the previous literature discussed above.

A potential explanation for these contrasting results is that traditional income inequality
measures might be ill-suited for measuring inequality arising from health care spending

(Kaestner and Lubotsky, 2016). Moreover, as already discussed above, the light-based
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inequality measure is likely to capture more than income inequality. Government policies
that increase universal health insurance coverage, and thereby reduce OOP expenditures,
might not directly affect the distribution of incomes within a country, but rather affect
the distribution and composition of households expenditures on light-producing goods and
services. If OOP expenditures take up a larger share of income for the poorer households
than for the richer, removing that burden can have a greater impact on the spending of
the former, thereby affecting the distribution of expenditures. Besides, the overall allocation
of expenditures between consumables and investments can also be affected if poorer and
richer households allocate their spending differently. Considering that investments in physical
structures, such as housing, are likely to increase the emission of lights more strongly, a policy
reducing the OOP expenditures can have an effect in the light-based inequality measure that
is not captured by the income-based measure. The fact that we find a positive and significant
relationship between OOP and the light-based measure of inequality after controlling for
country fixed effects suggests that reducing OOP expenditures can reduce economic inequality

through such expenditure-composition channels.

5.3 Epidemics

The second application studies the relationship between epidemics and income- and light-
based inequality measures. The economic literature analyzing this relationship is also limited.
Cogneau and Grimm (2008) suggest that AIDS-induced mortality reduces total household
income in Cote d’Ivoire, but find no distributional effects. Karlsson et al. (2014) on the
other hand find an increase in poverty after the 1918 Spanish flu in Sweden. Another strand
of literature studies how initial socio-economic inequality determines HIV outcomes, e.g.:
Durevall and Lindskog (2012) find that young women living in neighborhoods with increasing

wealth inequality face a higher risk of HIV infection.

For this application, we use data on epidemic disasters from the Emergency Events

Database provided by the Centre for Research on the Epidemiology of Disasters (CRED,
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2019). The database records a disaster event if at least one of the following criteria are fulfilled:
10 or more deaths, 100 or more people affected, a country declares a state of emergency or
calls for international assistance. In the context of Equation (5), we use the percentage of
individuals within each country that were affected by an epidemic during the year as the
explanatory variable. Although the overall level and variation in this variable are relatively
low, with both mean and standard deviation lower than 1% (see Table D3 in Appendix), its
maximum value was registered by Kenya in 1994, when 26% of the country’s population was

affected by a parasitic disease epidemic.

Table 3 presents the estimation results. The estimated overall relationships between
inequality and epidemics, reported in columns (1) and (4), are positive and statistically
significant. The magnitude of these overall effects do not vary significantly across the
inequality measures. Using the unweighted estimates, an epidemic affecting 10% of a country’s
population would be associated with an increase in inequality between 0.67 (light-based
measure) and 0.69 (income-based measure) standard deviations. Including fixed effects leads
to smaller, but still significant estimates for the income-based Gini-coefficient. However, the
estimates for the light-based Gini-coefficient switch sign and become insignificant, suggesting

that epidemics have no effect on the within country evolution of economic inequality.

These results can again be interpreted as evidence that the light-based measure captures
multiple aspects of economic inequality that go beyond income effects. Particularly in the
context of epidemics, the associated income shocks are likely to be of a transitory nature if the
epidemic has little effect on productive means, while the light-based measures can capture
more persistent effects that a regular exposition to epidemics can have on infrastructure
and development across countries. Finally, extending the sample to all observations jointly
available in the CRED (2019) database, as reported in columns (3) and (6), leads to more
than 5,000 observations across the 234 countries in our sample. In spite of the stark contrast
in sample sizes, evidencing the data limitations of income-based Gini-coefficients, the within

country effect of epidemics on the light-based inequality measure remains insignificant.
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Table 3: Regression Results for Epidemics

Dependent variable (1) (2) (3) (4) (5) (6)
Income-based Gini 6.903**  0.332%* 6.246***  0.829*
(2.750)  (0.147) (2.201)  (0.446)
Light-based Gini 6.710**%  -0.328  -1.065  5.749**  -0.264 -0.245
(1.562)  (0.721) (0.817) (1.185)  (0.367) (0.432)
Observations 3278 3278 5148 3278 3278 5148
# of countries 187 187 234 187 187 234
Country fixed effects no yes yes no yes yes
Population weights no no no yes yes yes

Notes: Each coefficient denotes one estimation of the model in Equation (5) using the percentage of
individuals affected by an epidemic as explanatory variable, and income- or light-based Gini-coefficients
as dependent. Data on epidemics are from CRED (2019) and cover the years 1992-2013. The light-
based Gini-coefficient refers to the weighted measure with our preferred parameter choice of A = 0.5.
Results for alternative values of A\ are reported in Figure D1 (b) in the Appendix. The income-based
Gini-coefficient is obtained from Solt (2016). Columns (1) and (4) include the country area as control
variables. Columns (4)-(6) show results with population weights, where countries with higher population
sizes receive a higher weight. *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the country
level and reported in parentheses.

5.4 Capital account liberalization

In the last application, we study the relationship between capital account liberalization
and inequality. Bumann and Lensink (2016) show that liberalization can lead to lower
income inequality for countries with a sufficiently high level of financial depth. De Haan
and Sturm (2017) review the empirical literature and report new evidence that financial
liberalization tends to increase income inequality, though this result is also conditioned on
the quality of political institutions and the level of financial development. Similarly, Furceri
and Loungani (2018) find that episodes of capital account liberalization increase income
inequality, particularly in countries that lack financial depth.

Following this literature, we use the Chinn and Ito (2008) index of capital account
openness as our explanatory variable of interest. The index is constructed through an analysis
of principal components of data on restrictions to cross-border financial transactions, the

latter collected from the IMF’s Annual Report on Exchange Arrangements and Exchange
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Restrictions. Although the principal components approach renders a measurement without a
direct economic interpretation, the index provides a useful criterion for relative assessments
of capital account liberalization across countries and over time. It reflects, for example, the
relatively higher levels of financial openness of industrialized countries, such as the United
Kingdom with an average index value of 1.35 standard deviations above the sample mean;
it also captures well known cases of rapid financial liberalization, as in the case of Brazil

jumping from the 6th to the 58th percentile of the index sample between 1997 and 2006.

Table 4 provides the estimation results. Without fixed effects, in columns (1) and (4), the
relationship between capital account liberalization and inequality is significantly negative,
indicating that liberalized countries tend to be more equal. These results, however, can be
due to effects on both directions, i.e., that countries with lower inequality tend to liberalize
more at the same time that greater financial openness can decrease inequality. In an attempt
to clarify this effect, we include country fixed effects, which allow us to filter out the cross-
country relationship and focus on the within country dynamics. Once we include country fixed
effects, financial openness is found to have a positive and significant effect on the light-based
Gini-coefficient, a result that is robust to both the sample definition, and the estimation with
population weights. Hence, these results indicate that countries which experienced episodes of
capital account liberalization also tended to endure periods of increased inequality, which is in
line with earlier literature. In terms of effect size the results in columns (5) and (6) indicate
that an increase in financial openness from the 25th to the 75th percentile (equivalent to
an index increase of 3.3; see Table D3 in the Appendix) is associated with a 0.12 standard

deviations increase in inequality.

It is interesting to note that this effect is only captured by the light-based inequality
measure, while the income-based measure is either insignificantly related with financial
liberalization episodes, under unweighted estimation, or presenting a negative and
(marginally) significant relationship when weighting by population. This clearly illustrates

another case where the focus on income data can have different, and potentially misleading,
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Table 4: Regression Results for Capital Account Liberalization

Dependent variable (1) (2) (3) (4) (5) (6)
Income-based Gini -0.186%** 0.011 -0.206*%**  -0.079*

(0.043) (0.013) (0.059)  (0.043)
Light-based Gini -0.152%*%  0.040***  0.031*** -0.272*%**  0.036*  0.034*

(0.032) (0.011) (0.011) (0.063)  (0.018)  (0.017)
Observations 3013 3013 3780 3013 3013 3780
# of countries 170 170 181 170 170 181
Country fixed effects no yes yes no yes yes
Population weights no no no yes yes yes

Notes: Each coefficient denotes one estimation of the model in Equation (5) using the Chinn-Ito index
as explanatory variable, and income- or light-based Gini-coefficients as dependent. Data on financial
openness are from Chinn and Ito (2008) and cover the years 1992-2013. The light-based Gini-coefficient
refers to the weighted measure with our preferred parameter choice of A = 0.5. Results for alternative
values of A are reported in Figure D1 (c) in the Appendix. The income-based Gini-coefficient is obtained
from Solt (2016). Columns (1) and (4) include the country area as control variables. Columns (4)-
(6) show results with population weights, where countries with higher population sizes receive a higher
weight. *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at the country level and reported in
parentheses.

implications. In particular, the estimates in column (5) indicate that while financial
liberalization policies may help reduce income inequality in more populated countries, such
policies have a clearer and more robust effect of increasing inequality in a broader sense, as
captured by the light-based measure. Once financial markets open up, tax evasion and shadow
economy activities are likely to increase. Traditional income inequality measures, relying on
declared income, are unable to take such activities into account (Alstadsseter et al., 2019),
while the light-based measure seems to capture them. We interpret these results as further
evidence that the light-based Gini-coefficients can provide a more robust measurement for

the identification of policy effects on economic inequality.

5.5 Results summary

In the applications above, we have studied how inequality is related to health expenditures,

epidemics, and financial liberalization, across global samples of countries. We focused on how
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the light-based measure of inequality developed in this paper compares to the traditional
income-based Gini-coefficient. Interestingly, the two measures of inequality generally agreed
on the overall relationship estimates: inequality tends to be higher in countries with higher
out-of-pocket (OOP) health expenditures, as well as in countries with a higher incidence of
epidemics, while financial liberalization is higher in more equal countries. Nevertheless, these

relationships are mainly driven by cross-country variation.

In fact, the two measures lead to contrasting results with respect to country-specific
dynamics (i.e., after including country fixed-effects in the regressions). First, we find a
positive and significant effect of OOP health expenditures on light-based inequality, but not
on the income-based measure of inequality. Second, while the effect of epidemics on income
inequality remains positive, there is no significant effect on light-based inequality. Finally,
financial openness is found to have a positive and robust within country effect on light-based

inequality, but not on income inequality.

Our interpretation of these differences goes back to the rationale for using night lights
data as a broader measurement of economic prosperity than income. Because the lights data
can capture other dimensions of economic activity, such as informal activities, infrastructure
investments, consumption, and wealth, it is natural that we obtain different implications for
the within country dynamics of inequality. Besides, one can not rule out the fact that the
geographical nature of our source data imprint stronger traces of regional inequality in the
geospatial measures. Altogether, we interpret these results as evidence that our new measure
of inequality is less prone to the effects of transitory income shocks, hence the insignificant
effect of epidemics, at the same time that it can capture richer dynamics in the more structural
contexts of health expenditures and financial development.

Finally, we also checked for the robustness of these estimates to our choice of A = 0.5
for the construction of the weighted inequality measure. Considering how this parameter
affected the cross- and within-country correlations between the light-based and the income-

based measures, its calibration could affect the comparative between the results obtained
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with these measures. Estimation results for alternative values of A are presented in Figure
D1 in the Appendix. Overall, we find little differences in estimates for A > 0.1. As expected,
as A — 0, the commonality between the pooled estimates obtained with the two measures
is lost; on the other hand, the estimates including country fixed-effects are hardly affected,

except for a narrowing of confidence bands.

6 Concluding Remarks

In this paper, we construct a measure of economic inequality based on geospatial nighttime
lights and population data. The underlying assumption is that nighttime light emissions are
a proxy for economic prosperity. By looking at how lights and population are distributed
geographically, we gauge multiple aspects of economic inequality. In particular, we argue
that our new measure can capture broad features of economic activity within countries, such
as the distribution of income, consumption expenditures, infrastructure investments, and
wealth. Besides, in comparison to traditional sources of economic data, night lights can more

promptly capture the effects of informal economic activities.

The use of night lights data for the measurement of inequality is not entirely new to
the literature. After reviewing this literature, we discuss our methodological novelty. Some
key innovations in our paper include an account for alternative sources of data and levels
of aggregation, as well as the development of a calibration approach geared towards the
measurement of income inequality. Besides these methodological advances, we also consider
a broader sample than the previous literature, covering a total of 234 countries and territories
between 1992 and 2013. The new measure is significantly correlated with cross-country
variation in income inequality. We also find that our light-based measures suggest generally

higher inequality than traditional measures.

In addition, we provide three applications of the data, which allow us to compare

the results between income- and light-based measures. These applications cover different
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fields of economics, such as health economics and international finance. In all applications,
we find similar results for both measures in the cross-country estimations but important
differences in terms of country-specific dynamics of inequality. We interpret these differences
as evidence that our new measure of inequality is less prone to the effects of transitory income
shocks, while capturing richer dynamics of more deeply rooted structural factors, such as the

distribution of productive means and the composition of expenditures across economic classes.

Naturally, the geospatial inequality measures have also some caveats, as both the night
lights and population data have their respective measurement issues. For instance, the quality
of measurement by satellites can change considerably over time, while there is substantial
cross-country variation in the accuracy of the population data. Another important issue
relates to the sensitivity of the remote sensing instruments to capture lights from dimmer
locations that can be inhabited by the most deprived population. In the paper, we strive
to account for these drawbacks and their potential to affect our measures by following the
latest literature and designing new solutions. In particular, our approach is geared towards
an agnostic use of all information that is readily available from these rich sources of data,

enabling us to obtain more accurate measures of inequality.

Further research can employ this novel data to study important policy questions related
to inequality. This might be especially relevant in developing countries where no or only a few
datapoints are available when using traditional inequality data. Moreover, our methodology
can be easily extended to construct inequality measures at a subnational level. Finally,
one could go beyond the Gini-coefficient and construct other inequality measures relying on

nighttime lights data.

Data Access

The data on light-based inequality measures generated by this project are available at:

http://www.ciesin.columbia.edu/data/global-geospatial-inequality.
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Appendix for Online Publication

A Population Sample Extrapolation

In order to construct inequality measures for the broader sample of data available on night
lights, we extrapolate the population data to cover an annual sample from 1992 to 2013.
For that purpose we calculate GPW population growth rates at the pixel level (which are
effectively varying only at the census level) and use these growth rates to extrapolate data
for the different sources. In fact, we conduct these calculations retroactively, starting with
the interpolation of the GPW data over the more recent missing middle years, and then
computing backcasts of both GPW and LSC data for the earlier years. In particular, letting
pft stand for the population count observed in pixel i, for year ¢, and using source data
S = {GPW, LSCY}, we first calculate

GPW

Pi2015
A 2015/2010 = &7 » (A1)

Di 2010
for every pixel in the global population dataset. We then obtain GPW interpolated annual
population counts for the years 2011 to 2013 using

GPW  _ . GPW 5
Di2010+n = Pi,2010 X Ai,2015/2010 ;

(A2)

for n = {1,2,3}. We repeat this procedure for the years of 2006-2009, 2001-2004, adjusting
the calculation of (A1) and (A2) according to the subperiod. We then use the earliest change
ratio, A; 2005/2000, t0 calculate backcasts for both GPW and LSC according to

S _ .S -5
D5.2000—n = Pi 2000 X Ai,2005/2000 ) (A3)

for n = {1,...,8}. Notice our use of GPW growth rates as well for backcasting LSC
population counts is due to the greater reliability of the former for comparisons across time.
We have indeed experimented with LSC growth rates but their implied population estimates
tended to be highly unstable.
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B Gini-coefficient Derivation

The Gini-coefficient is defined as the ratio of the area that lies between the line of perfect
equality (45° line) and the Lorenz curve over the total area under the equality line. For
a discrete population, obtaining the first area is equivalent to summing up the difference
between the equality line and the individual lights as a fraction of the total. Namely,

individual i’s area is given by
L (i Zk 1Yk
N\N Zk 1Yk

where N is the total number of people and y; is the light of individual ¢ (notice a slight abuse
of notation as ¢ here should not be confused with its use in the main text to denote a pixel in
the gridded dataset); geometrically, the expression inner brackets corresponds to the height
of the individual’s income “bar”, while 1/N is its width. Summing up over all individuals we
obtain

N ) ;
1 i D 1 Yk

A= — 2 Lik=19F \
N;<N Zgﬂ#@)

().

i=1 k=1
N
1 (N+1 .
:N<2_, 1(N—z+1)yi/zgyi>.
1= 1=

The Gini-coefficient is then obtained from its definition as the area A divided by 1/2 (area
underneath the 45° line), hence

N N
1
G/:N(N—i—l—QZ(N—i‘f‘l)yi/Zyi)'
i=1 =1

This formula can be further simplified as follows
1 N N N
G'= <N+1—2 ((N+1)Z;yz~—§;z’yi> /2%&) ,
_ 1 <N+1—2<N+1—§:iyi/§:yi>>
N 5

i=1 i=1
ZEZiN:liyi_NH (B4)
N Zf\i1 Yi N

Grouped data In order to obtain the Gini-coefficient for grouped data on population and
light intensity we need to adjust Equation (B4) to account for variable population sizes across
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the grouped data points. Let M denote the total number of groups, n; be the population in
group j, and x; the light intensity in group j, with the index ranked in ascending order of
groups’ light intensity per capita. Expanding the summation in the numerator of (B4) we
find that

N
. X e
STiyi = (I.Am) A (L)
i=1 m n2
X
oot (a1 L+ ) 2
na
M .
= > S(aj1+1,n5) 2, (B5)
— ng
7=1

where S (p, ¢) stands for the sum of the sequence of integers from p to p + ¢, which is given
by S (p,q) = 4 (2p+ ¢ — 1), and a; is the cumulative sum of population up to group j, i.e.,
aj = Zi:l ng for j > 0, and agp = 0. Substituting these quantities in (B5) we obtain

N
Z 1y;
i1

n; j
<5 (2 aj71+1)+nj—1)nfj,

which can then be substituted back into (B4) to obtain the grouped data formulation of the
Gini-coefficient,

(
n

M
= Z (

j=1

M +1
= Z 5

j=1

+ aj_l) xj,

M +1
o 2 2 =1 ("]TJFGH) Ti N +1

(B6)
N Zj\; Ty N

Small-sample bias Calculated from discrete data the Gini-coefficient is downward biased
due to the effects of interpolation on the coefficient’s upper bound, particularly lowering this
upper bound below unity. To see this consider first the case with individual data, Equation
(B4), when all individuals except one have zero lights, i.e., y; = 0Vi < N, then

2 Nyn  N+1

G = =N LT
max NyN N’
_N_l_l i
N N’

Hence, the smaller the sample of data used for the calculation of the Gini-coefficient the lower
its upper bound. A straightforward correction for this distortion is to divide G’ by 1 — 1/N
(Deltas, 2003). A similar result and correction is possible for the grouped data formulation,
Equation (B6). Here, the hypothetical maximum Gini-coefficient is given by a situation where
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x; = 0Vj < M, which then results in

2 (nMHJraM NEERES

Gmaa::N N
2 nM+1 N+1
il N —
N( + nM) N
N —n Ny
- Mo_ I B7
N ~ (B7)

In contrast to the calculation based on individual data, the upper bound on the Gini-
coefficient calculated from grouped data decreases with the share of population in the group
concentrating total lights. To translate this result into a correction it is important to recall
that population shares can vary across groups, in which case the maximal inequality is in
fact obtained in the hypothetical situation of all lights being concentrated in the group with
minimal population share. Hence, a correction for the small-sample bias under grouped data
is obtained by dividing G by 1 — min {n;/N}. A simpler and stronger correction is obtained
by assuming njs is equal to the average of nj, i.e., replacing ny; = ﬁzjj‘il nj = N/M
n (B7), the correction simplifies to 1 — 1/M. Notice this is equivalent to assuming equal
population shares across groups.
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C Summary Statistics on Gini-coefficients

Table C1 shows summary statistics on our geospatial Gini-coefficients. We can draw several
observations from these statistics. First, we observe that the census-level measures of
inequality are on average lower than the pixel-level ones. Second, the scaling factors are
found to have a nonlinear effect on our inequality measures, initially lowering the average
Gini-coefficients as k increases from 0.5 to 2, and then increasing them as k is calibrated
above 2. Third, a similar nonlinearity affects the dispersion of our geospatial Gini-coefficients.
Interestingly, the census-level measures are more dispersed than the pixel-level ones. One
potential explanation for this difference is that the level of geographical aggregation in the
GPW-based measures varies substantially across countries, according to the different census
areas, whereas the pixel-level aggregation is nearly constant. Due to the Earth’s curvature,
the area covered by each pixel depends on its latitude, decreasing from the equator to the
poles. Hence, countries located closer to the equator have datapoints aggregated over bigger
areas than Northern and Southern countries. Finally, a decomposition of the variance of the
geospatial Gini-coefficients is also reported in Table C1, showing that most of the dispersion
in these measures is due to cross-country variation. Also notice that, in spite of having a
lower overall variance, the LSC-based Gini-coefficients show greater variation over time than
those based on GPW (except for k = 5); this result corroborates our assessment on the
time-varying precision of the LSC source.

Table C1: Geospatial Gini-Coefficients Summary Statistics

(a) LSC/Pixel-level Gini-Coefficients

k=05 K=10 k=15 k=20 kK=30 k=50

Averages 0.788 0.757 0.729 0.714 0.751 0.818
Standard deviations:
Pooled observations 0.103 0.095 0.086 0.081 0.092 0.114
Across country averages  0.086 0.079 0.071 0.067 0.080 0.104
Across year averages 0.025 0.022 0.018 0.015 0.012 0.007

(b) GPW /Census-level Gini-Coefficients

k=05 kK=10 k=15 k=20 k=30 k=50

Averages 0.600 0.538 0.475 0.443 0.510 0.627
Standard deviations:
Pooled observations 0.195 0.201 0.197 0.180 0.177 0.212
Across country averages  0.194 0.200 0.195 0.177 0.172 0.207
Across year averages 0.003 0.006 0.009 0.008 0.012 0.011

Notes: The pooled standard deviations are calculated over all 5,148 country-year geospatial Gini-
coefficients together, whereas the standard deviations on country and year averages are calculated from
234 country and 22 year averages, respectively.
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Table C2: Income- and Light-based Gini-coefficients Summary Statistics

Weighted light-based Gini-coefficients

Income Common sample Extended sample
Ginis A=0 A=05 =1 A=0 A=05 =1
Averages 0.389 0.642  0.682  0.703 0.677  0.705 0.721
Standard deviations:
Pooled observations 0.084 0.136  0.104  0.098 0.109 0.082  0.078
Across country averages  0.081 0.136  0.100  0.093 0.115  0.083  0.077
Across year averages 0.007 0.003  0.007  0.006 0.005  0.007  0.007

Notes: Statistics under the common sample for income- and weighted light-based Gini-coefficients are
based on 3,278 country-year observations, while the extended sample contains a total of 5,148 observations.

Table C2 presents summary statistics on the light- and income-based Gini-coefficients.
There is a clear difference in levels between the light- and the income-based Gini-coefficients,
the former being between 0.28 and 0.33 higher than the latter, on average and depending on
A. The overall dispersion of inequality is also greater under the light-based measurements,
though the light-based Gini-coefficients obtained from a higher weight on cross-country
correlations (A — 1) tend to have similar standard deviation statistics as the income-based
Gini-coefficients. This is consistent with our analysis of the geospatial Gini-coefficients
variances above-recall most part of the light-based Gini-coefficients variation comes from
their cross-country differences, which is also the case for the income- and light-based Gini-
coefficients. It is also important to note that the light-based measures are highly correlated
across their different \’s — their pooled correlations vary from 0.790 (between the two extreme
A values) to 0.999 (between smaller \ steps).
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D Supplementary Statistics

Est. coefficient (without weight)

Est. coefficient (with pop. weight)

Est. coefficient (without weight)

Est. coefficient (with pop. weight)
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Figure D1: Robustness Graphs for Applications
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Figure D1: Robustness Graphs for Applications (Continued)

(c) Capital Account Liberalization
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Notes: The graphs show point estimates and confidence intervals for estimating Equation (5). Inc Gini
refers to the income-based Gini-coefficient as the dependent variable, while Light-based Gini stands for the
light-based Gini-coefficient. We show results for different values of the A parameter increasing in steps of 0.1
from 0 to 1. Estimates presented in Tables 2, 3, and 4 are in black. In particular, using the income-based
Gini-coefficient as the dependent variable is represented by the first estimate and the estimate for A = 0.5
may be found in the middle. Other values of A are in gray. The explanatory variable is the share of OOP
expenditure (Source: WHO, 2019) for (a), the percentage of individuals affected by an epidemic disaster
(Source: CRED, 2019) for (b), and capital account liberalization (Chinn and Ito, 2006) for (c).

Table D3: Descriptive Statistics for Applications

Variable Obs Mean Std. Dev. Min P25 P50 P75 Max
Share of OOP health exp 2601  .3503 .1999 0 1813 .3304 4992 .9081
Perc. of inh. affected by epi. 5148  .0004 .0061 0 0 0 0 .261
Capital account liberalization 3780  .232 1.56 -1.9166 -1.21 -.1412 2.0904 2.3467

Notes: Table shows descriptive statistics (without weights) on the explanatory variables for our
applications. In particular, we use the share of OOP health expenditures in Section 5.2, while the
percentage of inhabitants affected by an epidemic is used in Section 5.3. Finally, in Section 5.4, we use
capital account liberalization as an explanatory variable for inequality.
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Table D4: Regression Results Without Controlling for Country Area

OOP Expenditure Epidemics CA Liberalization

Dependent variable (1) (2) (3) (4) (5) (6)

Income-based Gini 0.732*%  1.442%%¥*  §.827**  B.761*¥**  _0.186**F* -(0.210***
(0.402)  (0.529)  (2.723)  (1.959)  (0.0431)  (0.0583)

Light-based Gini 0.090%HF%  1.738%FF  §.433%0% 4 287F%  _(.153%FF (), 208%%*
(0.280)  (0.509)  (1.637)  (2.136)  (0.0327)  (0.0773)

Observations 2089 2089 3278 3278 3013 3013
# of countries 177 177 187 187 177 188
Country fixed effects no no no no no no
Population weights no yes no yes no yes

Notes: Results without area controls of columns (1) and (4) of Table 2 for explanatory variable OOP
expenditure, Table 3 for explanatory variable epidemics, and Table 4 for explanatory variable capital
account liberalization. The light-based Gini-coefficient refers to the weighted measure with our preferred
parameter choice of A = 0.5. The income-based Gini-coefficient is obtained from Solt (2016). *** p<0.01,
** p<0.05, * p<0.1. Standard errors clustered at the country level and reported in parentheses.
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Table D5: List of Countries and Territories

Country or territory # inc Country or territory  # inc Country or territory # inc Country or territory # inc Country or territory # inc
Afghanistan 6 Congo 7 Iceland 22 Myanmar 4 Slovakia 22
Aland Islands 0 Cook Islands 0 India 21 Namibia 21 Slovenia 22
Albania 17 Costa Rica 22 Indonesia 22 Nauru 1 Solomon Islands 9
Algeria 20 Cote d’Ivoire 22 Iran (Islamic Republic of) 22 Nepal 19 Somalia 1
American Samoa 0 Croatia 22 Iraq 7 Netherlands 22 South Africa 22
Andorra 0 Cuba 0 Ireland 22 New Caledonia 0 South Sudan 1
Angola 10 Curacao 0 Isle of Man 0 New Zealand 22 Spain 22
Antigua and Barbuda 1 Cyprus 22 Israel 22 Nicaragua 21 Sri Lanka 22
Argentina 22 Czech Republic 22 Italy 22 Niger 22 State of Palestine 16
Armenia 22 Denmark 22 Jamaica 13 Nigeria 19 Sudan 18
Aruba 0 Djibouti 18 Japan 22 Niue 0 Suriname 7
Australia 22 Dominica 9 Jersey 0 Norfolk Island 0 Swaziland 18
Austria 22 Dominican Republic 22 Jordan 22 Northern Mariana Islands 0 Sweden 22
Azerbaijan 17 DPR Korea 0 Kazakhstan 22 Norway 22 Switzerland 22
Bahamas 13 DR Congo 9 Kenya 16 Oman 0 Syrian Arab Republic 11
Bahrain 0 Ecuador 22 Kiribati 1 Pakistan 22 Taiwan 22
Bangladesh 22 Egypt 22 Kosovo 11 Palau 1 Tajikistan 22
Barbados 19 El Salvador 22 Kuwait 1 Panama 22 Thailand 22
Belarus 22 Equatorial Guinea 1 Kyrgyzstan 22 Papua New Guinea 14 Timor-Leste 13
Belgium 22 Eritrea 0 Lao PDR 22 Paraguay 22 Togo 9
Belize 17 Estonia 22 Latvia 22 Peru 22 Tokelau 0
Benin 12 Ethiopia 19 Lebanon 18 Philippines 22 Tonga 18
Bermuda 0 Faeroe Islands 0 Lesotho 19 Poland 22 Trinidad and Tobago 14
BES islands 0 Falkland Islands 0 Liberia 9 Portugal 22 Tunisia 21
Bhutan 10 Fiji 22 Libya 1 Puerto Rico 22 Turkey 22
Bolivia 22 Finland 22 Liechtenstein 0 Qatar 22 Turkmenistan 14
Bosnia and Herzegovina 13 France 22 Lithuania 22 Republic of Korea 22 Turks and Caicos Islands 1
Botswana 19 French Guiana 0 Luxembourg 22 Republic of Moldova 22 Tuvalu 17
Brazil 22 French Polynesia 0 Madagascar 21 Republic of North Macedonia 20 Uganda 22
British Virgin Islands 0 Gabon 1 Malawi 22 Reunion 0 Ukraine 22
Brunei Darussalam 0 Gambia 22 Malaysia 22 Romania 22 United Arab Emirates 1
Bulgaria 22 Georgia 22 Maldives 9 Russian Federation 22 United Kingdom 22
Burkina Faso 20 Germany 22 Mali 16 Rwanda 22 United Republic of Tanzania 22
Burundi 22 Ghana 22 Malta 15 Saint Helena 0 United States of America 22
Cambodia 16 Greece 22 Marshall Islands 0 Saint Kitts and Nevis 10 Uruguay 22
Cameroon 18 Greenland 0 Martinique 0 Saint Lucia 13 US Virgin Islands 0
Canada 22 Grenada 10 Mauritania 22 Saint Pierre and Miquelon 0 Uzbekistan 12
Cape Verde 15 Guadeloupe 0 Mauritius 21 Saint Vincent 14 Vanuatu 5
Cayman Islands 0 Guam 0 Mayotte 0 San Marino 0 Venezuela 22
Central African Republic 17 Guatemala 22 Mexico 22 Sao Tome and Principe 11 Viet Nam 22
Chad 9 Guernsey 0 Micronesia 16 Saudi Arabia 0 Wallis and Futuna Islands 0
Chile 22 Guinea 21 Monaco 0 Senegal 20 Western Sahara 0
China 22 Guinea-Bissau 18 Mongolia 19 Serbia 17 Western Samoa 7
China, Hong Kong 22 Guyana 16 Montenegro 9 Seychelles 8 Yemen 22
China, Macao 0 Haiti 12 Montserrat 0 Sierra Leone 20 Zambia 22
Colombia 22 Honduras 22 Morocco 22 Singapore 22 Zimbabwe 17
Comoros 10 Hungary 22 Mozambique 18 Sint Maarten (Dutch part) 0

Notes: Table alphabetically lists all countries and territories in our sample and the corresponding number of observations for the income-based
Gini-coefficient. For all 234 countries listed we have 22 yearly observations for the light-based Gini-coefficient and thus 5,148 observations in total.
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